TY - JOUR
T1 - The distribution and abundance of electrosensory pores in two benthic sharks
T2 - a comparison of the wobbegong shark, Orectolobus maculatus, and the angel shark, Squatina australis
AU - Egeberg, Channing A.
AU - Kempster, Ryan M.
AU - Theiss, Susan M.
AU - Hart, Nathan S.
AU - Collin, Shaun P.
PY - 2014
Y1 - 2014
N2 - Electroreception is an ancient sense found in many aquatic animals, including sharks, which may be used in the detection of prey, predators and mates. Wobbegong sharks (Orectolobidae) and angel sharks (Squatinidae) represent two distantly related families that have independently evolved a similar dorso-ventrally compressed body form to complement their benthic ambush feeding strategy. Consequently, these groups represent useful models in which to investigate the specific morphological and physiological adaptations that are driven by the adoption of a benthic lifestyle. In this study, we compared the distribution and abundance of electrosensory pores in the spotted wobbegong shark (Orectolobus maculatus) with the Australian angel shark (Squatina australis) to determine whether both species display a similar pattern of clustering of sub-dermal electroreceptors and to further understand the functional importance of electroreception in the feeding behaviour of these benthic sharks. Orectolobus maculatus has a more complex electrosensory system than S. australis, with a higher abundance of pores and an additional cluster of electroreceptors positioned in the snout (the superficial ophthalmic cluster). Interestingly, both species possess a cluster of pores (the hyoid cluster, positioned slightly posterior to the first gill slit) more commonly found in rays, but which may be present in all benthic elasmobranchs to assist in the detection of approaching predators.
AB - Electroreception is an ancient sense found in many aquatic animals, including sharks, which may be used in the detection of prey, predators and mates. Wobbegong sharks (Orectolobidae) and angel sharks (Squatinidae) represent two distantly related families that have independently evolved a similar dorso-ventrally compressed body form to complement their benthic ambush feeding strategy. Consequently, these groups represent useful models in which to investigate the specific morphological and physiological adaptations that are driven by the adoption of a benthic lifestyle. In this study, we compared the distribution and abundance of electrosensory pores in the spotted wobbegong shark (Orectolobus maculatus) with the Australian angel shark (Squatina australis) to determine whether both species display a similar pattern of clustering of sub-dermal electroreceptors and to further understand the functional importance of electroreception in the feeding behaviour of these benthic sharks. Orectolobus maculatus has a more complex electrosensory system than S. australis, with a higher abundance of pores and an additional cluster of electroreceptors positioned in the snout (the superficial ophthalmic cluster). Interestingly, both species possess a cluster of pores (the hyoid cluster, positioned slightly posterior to the first gill slit) more commonly found in rays, but which may be present in all benthic elasmobranchs to assist in the detection of approaching predators.
KW - Elasmobranch
KW - ambush feeding behaviour
KW - ampullae of Lorenzini
KW - electroreception
KW - predator avoidance
UR - http://www.scopus.com/inward/record.url?scp=84908293235&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/arc/DP110103294
U2 - 10.1071/MF13213
DO - 10.1071/MF13213
M3 - Article
AN - SCOPUS:84908293235
SN - 1323-1650
VL - 65
SP - 1003
EP - 1008
JO - Marine and Freshwater Research
JF - Marine and Freshwater Research
IS - 11
ER -