TY - JOUR
T1 - The endogenous tryptophan metabolite and NAD(+) precursor quinolinic acid confers resistance of gliomas to oxidative stress
AU - Sahm, Felix
AU - Oezen, Iris
AU - Opitz, Christiane A.
AU - Radlwimmer, Bernhard
AU - Von Deimling, Andreas
AU - Ahrendt, Tilman
AU - Adams, Seray
AU - Bode, Helge B.
AU - Guillemin, Gilles J.
AU - Wick, Wolfgang
AU - Platten, Michael
PY - 2013/6/1
Y1 - 2013/6/1
N2 - Quinolinic acid is a product of tryptophan degradation and may serve as a precursor for NAD+, an important enzymatic cofactor for enzymes such as the DNA repair protein PARP. Pathologic accumulation of quinolinic acid has been found in neurodegenerative disorders including Alzheimer and Huntington disease, where it is thought to be toxic for neurons by activating the N-methyl-D-aspartate (NMDA) receptor and inducing excitotoxicity. Although many tumors including gliomas constitutively catabolize tryptophan, it is unclear whether quinolinic acid is produced in gliomas and whether it is involved in tumor progression. Here, we show that quinolinic acid accumulated in human gliomas andwas associated with a malignant phenotype. Quinolinic acid was produced by microglial cells, as expression of the quinolinic acid-producing enzyme 3- hydroxyanthranilate oxygenase (3-HAO) was confined to microglia in glioma tissue. Human malignant glioma cells, but not nonneoplastic astrocytes, expressed quinolinic acid phosphoribosyltransferase (QPRT) to use quinolinic acid for NAD+ synthesis and prevent apoptosis when de novo NAD + synthesis was blocked. Oxidative stress, temozolomide, and irradiation induced QPRT in glioma cells. QPRT expression increased with malignancy. In recurrent glioblastomas after radiochemotherapy, QPRT expression was associated with a poor prognosis in two independent datasets. Our data indicate that neoplastic transformation in astrocytes is associated with a QPRT-mediated switch in NAD+ metabolism by exploiting microglia-derived quinolinic acid as an alternative source of replenishing intracellular NAD+ pools. The elevated levels of QPRT expression increase resistance to oxidative stress induced by radiochemotherapy, conferring a poorer prognosis. These findings have implications for therapeutic approaches inducing intracellular NAD+ depletion, such as alkylating agents or direct NAD+ synthesis inhibitors, and identify QPRT as a potential therapeutic target in malignant gliomas.
AB - Quinolinic acid is a product of tryptophan degradation and may serve as a precursor for NAD+, an important enzymatic cofactor for enzymes such as the DNA repair protein PARP. Pathologic accumulation of quinolinic acid has been found in neurodegenerative disorders including Alzheimer and Huntington disease, where it is thought to be toxic for neurons by activating the N-methyl-D-aspartate (NMDA) receptor and inducing excitotoxicity. Although many tumors including gliomas constitutively catabolize tryptophan, it is unclear whether quinolinic acid is produced in gliomas and whether it is involved in tumor progression. Here, we show that quinolinic acid accumulated in human gliomas andwas associated with a malignant phenotype. Quinolinic acid was produced by microglial cells, as expression of the quinolinic acid-producing enzyme 3- hydroxyanthranilate oxygenase (3-HAO) was confined to microglia in glioma tissue. Human malignant glioma cells, but not nonneoplastic astrocytes, expressed quinolinic acid phosphoribosyltransferase (QPRT) to use quinolinic acid for NAD+ synthesis and prevent apoptosis when de novo NAD + synthesis was blocked. Oxidative stress, temozolomide, and irradiation induced QPRT in glioma cells. QPRT expression increased with malignancy. In recurrent glioblastomas after radiochemotherapy, QPRT expression was associated with a poor prognosis in two independent datasets. Our data indicate that neoplastic transformation in astrocytes is associated with a QPRT-mediated switch in NAD+ metabolism by exploiting microglia-derived quinolinic acid as an alternative source of replenishing intracellular NAD+ pools. The elevated levels of QPRT expression increase resistance to oxidative stress induced by radiochemotherapy, conferring a poorer prognosis. These findings have implications for therapeutic approaches inducing intracellular NAD+ depletion, such as alkylating agents or direct NAD+ synthesis inhibitors, and identify QPRT as a potential therapeutic target in malignant gliomas.
UR - http://www.scopus.com/inward/record.url?scp=84878595867&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-12-3831
DO - 10.1158/0008-5472.CAN-12-3831
M3 - Article
C2 - 23548271
AN - SCOPUS:84878595867
VL - 73
SP - 3225
EP - 3234
JO - Cancer Research
JF - Cancer Research
SN - 0008-5472
IS - 11
ER -