The energy loss may predict rupture risks of anterior communicating aneurysms: a preliminary result

Peng Hu, Yi Qian, Chong Joon Lee, Hong Qi Zhang*, Feng Ling

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)
    14 Downloads (Pure)


    Anterior communicating artery (ACoA) aneurysms are well documented to have a higher rupture risk compared with aneurysms at other locations. However, the risk predicting factors for these aneurysms still remain unclear due to the complex arteries geometries and flow patterns involved. The authors introduce a comprehensive method to quantitatively illustrate the development of ACoA aneurysms using a computational fluid dynamics (CFD) approach. Seven ACoA aneurysms, which included 2 ruptured and 5 unruptured aneurysms, were employed. Patient-specific whole anterior circulation geometries were segmented to simulate the real circumstances in vivo. The energy losses (EL) and flow architectures of these 7 aneurysms were evaluated using an algorithm modality. Overall, the 2 ruptured aneurysms, along with 1 unruptured aneurysm that was defined as highly likely to rupture due to ACoA location and a bleb sitting at the top of the dome, had a significantly larger EL and more complex and unstable flow architecture than the others. Two aneurysms had a negative value of EL indicating that the geometries with aneurysms of the anterior communicating complex (ACC) had a smaller loss of energy than the geometries without aneurysms. Despite a small sample size resulting in a low statistical significance, EL may serve as a development predictor of ACoA aneurysms.

    Original languageEnglish
    Pages (from-to)4128-4133
    Number of pages6
    JournalInternational Journal of Clinical and Experimental Medicine
    Issue number3
    Publication statusPublished - 30 Mar 2015

    Bibliographical note

    Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


    • Aneurysm rupture
    • Anterior communicating artery aneurysm
    • Computational fluid dynamics
    • Energy loss


    Dive into the research topics of 'The energy loss may predict rupture risks of anterior communicating aneurysms: a preliminary result'. Together they form a unique fingerprint.

    Cite this