TY - JOUR
T1 - The function of the human interferon-β1a glycan determined in vivo
AU - Dissing-Olesen, Lasse
AU - Thaysen-Andersen, Morten
AU - Meldgaard, Michael
AU - Højrup, Peter
AU - Finsen, Bente
PY - 2008/7
Y1 - 2008/7
N2 - Recombinant human interferon-β (rhIFN-β) is the leading therapeutic intervention shown to change the cause of relapsing-remitting multiple sclerosis, and both a nonglycosylated and a significantly more active glycosylated variant of rhIFN-β are used in treatment. This study investigates the function of the rhIFN-β1a glycan moiety and its individual carbohydrate residues, using the myxovirus resistance (Mx) mRNA as a biomarker in Mx-congenic mice. We showed that the Mx mRNA level in blood leukocytes peaked 3 h after s.c. administration of rhIFN-β1a. In addition, a clear dose-response relationship was confirmed, and the Mx response was shown to be receptor-mediated. Using specific glycosidases, different glycosylation analogs of rhIFN-β1a were obtained, and their activities were determined. The glycosylated rhIFN-β1a showed significantly higher activity than its deglycosylated counterpart, due to a protein stabilization/solubilization effect of the glycan. It is interesting to note that the terminating sialic acids were essential for these effects. Conclusively, the structure/bioactivity relationship of rhIFN-β1a was determined in vivo, and it provided a novel insight into the role of the rhIFN-β1a glycan and its carbohydrate residues. The possibilities of improving the pharmacological properties of rhIFN-β1a using glycoengineering are discussed.
AB - Recombinant human interferon-β (rhIFN-β) is the leading therapeutic intervention shown to change the cause of relapsing-remitting multiple sclerosis, and both a nonglycosylated and a significantly more active glycosylated variant of rhIFN-β are used in treatment. This study investigates the function of the rhIFN-β1a glycan moiety and its individual carbohydrate residues, using the myxovirus resistance (Mx) mRNA as a biomarker in Mx-congenic mice. We showed that the Mx mRNA level in blood leukocytes peaked 3 h after s.c. administration of rhIFN-β1a. In addition, a clear dose-response relationship was confirmed, and the Mx response was shown to be receptor-mediated. Using specific glycosidases, different glycosylation analogs of rhIFN-β1a were obtained, and their activities were determined. The glycosylated rhIFN-β1a showed significantly higher activity than its deglycosylated counterpart, due to a protein stabilization/solubilization effect of the glycan. It is interesting to note that the terminating sialic acids were essential for these effects. Conclusively, the structure/bioactivity relationship of rhIFN-β1a was determined in vivo, and it provided a novel insight into the role of the rhIFN-β1a glycan and its carbohydrate residues. The possibilities of improving the pharmacological properties of rhIFN-β1a using glycoengineering are discussed.
UR - http://www.scopus.com/inward/record.url?scp=45749158577&partnerID=8YFLogxK
U2 - 10.1124/jpet.108.138263
DO - 10.1124/jpet.108.138263
M3 - Article
C2 - 18445781
AN - SCOPUS:45749158577
SN - 0022-3565
VL - 326
SP - 338
EP - 347
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 1
ER -