Abstract
Niobium-92 is an extinct proton-rich nuclide, which decays to 92Zr with a half-life of 37 Ma. This radionuclide potentially offers a unique opportunity to determine the timescales of early Solar System processes and the site(s) of nucleosynthesis for p-nuclei, once its initial abundance and distribution in the Solar System are well established. Here we present internal Nb-Zr isochrons for three basaltic achondrites with known U-Pb ages: the angrite NWA 4590, the eucrite Agoult, and the ungrouped achondrite Ibitira. Our results show that the relative Nb-Zr isochron ages of the three meteorites are consistent with the time intervals obtained from the Pb-Pb chronometer for pyroxene and plagioclase, indicating that 92Nb was homogeneously distributed among their source regions. The Nb-Zr and Pb-Pb data for NWA 4590 yield the most reliable and precise reference point for anchoring the Nb-Zr chronometer to the absolute timescale: an initial 92Nb/93Nb ratio of (1.4 ± 0.5) x 10-5 at 4557.93 ± 0.36 Ma, which corresponds to a 92Nb/93Nb ratio of (1.7 ± 0.6) x 10-5 at the time of the Solar System formation. On the basis of this new initial ratio, we demonstrate the capability of the Nb-Zr chronometer to date early Solar System objects including troilite and rutile, such as iron and stony-iron meteorites. Furthermore, we estimate a nucleosynthetic production ratio of 92Nb to the p-nucleus 92Mo between 0.0015 and 0.035. This production ratio, together with the solar abundances of other p-nuclei with similar masses, can be best explained if these light p-nuclei were primarily synthesized by photodisintegration reactions in Type Ia supernovae.
Original language | English |
---|---|
Pages (from-to) | 172-181 |
Number of pages | 10 |
Journal | Earth and Planetary Science Letters |
Volume | 439 |
DOIs | |
Publication status | Published - 1 Apr 2016 |
Externally published | Yes |
Bibliographical note
Copyright the Author(s) 2016. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Nb-Zr
- early Solar System chronology
- p-nuclei
- supernovae
- achondrite
- meteorite zircon