TY - GEN
T1 - The Keck-FOBOS spectroscopic facility
T2 - Ground-based and Airborne Instrumentation for Astronomy VIII
AU - Bundy, Kevin
AU - Westfall, Kyle B.
AU - MacDonald, Nick
AU - Kupke, Renate
AU - Poppett, Claire
AU - Miller, Timothy N.
AU - Lawrence, Jon
AU - Saavedra Lacombea, Celestina
AU - Yan, Renbin
AU - Goodwin, Michael
AU - Kassis, Marc
AU - O'Meara, John M.
AU - Masters, Daniel
AU - Burchett, Joseph
AU - Williams, Benjamin
AU - Rich, Michael
AU - Villar, V. Ashley
AU - Sandford, Nathan
AU - Ting, Yuan-Sen
AU - Hinz, Phil
AU - Schafer, Chad
AU - Mandelbaum, Rachel
AU - Huang, Marina
AU - Prochaska, J. Xavier
AU - Guhathakurta, Puragra
N1 - Copyright 2020 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
PY - 2020/12/13
Y1 - 2020/12/13
N2 - The Fiber Optic Broad-band Optical Spectrometer (FOBOS) is a high-priority spectroscopic facility concept for the W. M. Keck Observatory. Here, we provide an update on the FOBOS conceptual design. FOBOS will deploy 1800 fibers across the 20-arcminute field-of-view of the Keck II Telescope. Starbugs fiber positioners will be used to deploy individual fibers as well as fiber-bundle arrays (integral field units, IFUs). Different combinations of active single fibers or IFUs can be selected to carry light to one of three mounted spectrographs, each with a 600-fiber pseudoslit. Each spectrograph has four wavelength channels, enabling end-to-end instrument sensitivity greater than 30% from 0.31-1.0 µm at a spectral resolution of R ~ 3500. With its high fiber density on a large telescope and modest field-of-view, FOBOS is optimized to obtain deep spectroscopy for large samples. In single- fiber mode, it will deliver premier spectroscopic reference sets for maximizing the information (e.g., photometric redshifts) that can be extracted from panoramic imaging surveys obtained from the forthcoming Rubin and Roman Observatories. Its IFUs will map emission from the circumgalactic interface between forming galaxies and the intergalactic medium at z ~ 2–3, and lay the path for multiplexed resolved spectroscopy of high-z galaxies aided by ground-layer and multi-object adaptive optics. In the nearby universe, its high sampling density and combination of single-fiber and IFU modes will revolutionize our understanding of the M31 disk and bulge via stellar populations and kinematics. Finally, with a robust and intelligent target and program allocation system, FOBOS will be a premier facility for follow-up of rare, faint, and transient sources that can be interleaved into its suite of observing programs. With a commitment to delivering science-ready data products, FOBOS will enable unique and powerful combinations of focused, PI-led programs and community-driven observing campaigns that promise major advances in cosmology, galaxy formation, time-domain astronomy, and stellar evolution.
AB - The Fiber Optic Broad-band Optical Spectrometer (FOBOS) is a high-priority spectroscopic facility concept for the W. M. Keck Observatory. Here, we provide an update on the FOBOS conceptual design. FOBOS will deploy 1800 fibers across the 20-arcminute field-of-view of the Keck II Telescope. Starbugs fiber positioners will be used to deploy individual fibers as well as fiber-bundle arrays (integral field units, IFUs). Different combinations of active single fibers or IFUs can be selected to carry light to one of three mounted spectrographs, each with a 600-fiber pseudoslit. Each spectrograph has four wavelength channels, enabling end-to-end instrument sensitivity greater than 30% from 0.31-1.0 µm at a spectral resolution of R ~ 3500. With its high fiber density on a large telescope and modest field-of-view, FOBOS is optimized to obtain deep spectroscopy for large samples. In single- fiber mode, it will deliver premier spectroscopic reference sets for maximizing the information (e.g., photometric redshifts) that can be extracted from panoramic imaging surveys obtained from the forthcoming Rubin and Roman Observatories. Its IFUs will map emission from the circumgalactic interface between forming galaxies and the intergalactic medium at z ~ 2–3, and lay the path for multiplexed resolved spectroscopy of high-z galaxies aided by ground-layer and multi-object adaptive optics. In the nearby universe, its high sampling density and combination of single-fiber and IFU modes will revolutionize our understanding of the M31 disk and bulge via stellar populations and kinematics. Finally, with a robust and intelligent target and program allocation system, FOBOS will be a premier facility for follow-up of rare, faint, and transient sources that can be interleaved into its suite of observing programs. With a commitment to delivering science-ready data products, FOBOS will enable unique and powerful combinations of focused, PI-led programs and community-driven observing campaigns that promise major advances in cosmology, galaxy formation, time-domain astronomy, and stellar evolution.
KW - Ground-based Astronomical Instruments
UR - http://www.scopus.com/inward/record.url?scp=85107499232&partnerID=8YFLogxK
U2 - 10.1117/12.2562914
DO - 10.1117/12.2562914
M3 - Conference proceeding contribution
SN - 9781510636811
T3 - Proceedings of SPIE
SP - 114471D-1-114471D-14
BT - Ground-based and Airborne Instrumentation for Astronomy VIII
A2 - Evans, Christopher J.
A2 - Bryant, Julia J.
A2 - Motohara, Kentaro
PB - SPIE
CY - Bellingham, Washington
Y2 - 14 December 2020 through 22 December 2020
ER -