The linear stability of oscillatory poiseuille flow in channels and pipes

Christian Thomas, Andrew P. Bassom*, P. J. Blennerhassett, Christopher Davies

*Corresponding author for this work

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

The linear stability of confined, periodic, parallel fluid flows is examined. The flow fields considered consist of a steady pressure gradient-driven velocity field combined with a purely oscillatory component generated by either an oscillatory pressure gradient or by harmonically oscillating bounding surfaces. Plane channel and circular pipe geometries are studied and all possible combinations of the steady and oscillatory flow components investigated. Neutral stability curves and critical conditions for instability are computed for a selection of steady-unsteady velocity ratios, channel half-widths and pipe radii. The results obtained confirm previous investigations into the effects of small amounts of periodic modulation on the linear stability of the underlying steady flow, but provide much more comprehensive information on the linear stability regions of unsteady parallel flows in channels and pipes. This journal is

Original languageEnglish
Pages (from-to)2643-2662
Number of pages20
JournalProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume467
Issue number2133
DOIs
Publication statusPublished - 8 Sep 2011
Externally publishedYes

Keywords

  • time-periodic
  • shear flows
  • instability

Fingerprint Dive into the research topics of 'The linear stability of oscillatory poiseuille flow in channels and pipes'. Together they form a unique fingerprint.

Cite this