TY - JOUR
T1 - The long-term reliability of static and dynamic Quantitative Sensory Testing in healthy individuals
AU - Marcuzzi, Anna
AU - Wrigley, Paul
AU - Dean, Catherine
AU - Adams, Roger
AU - Hush, Julia
PY - 2017/7
Y1 - 2017/7
N2 - Quantitative sensory tests (QSTs) have been increasingly used to investigate alterations in somatosensory function in a wide range of painful conditions. The interpretation of these findings is based on the assumption that the measures are stable and reproducible. To date, reliability of QST has been investigated for short test-retest intervals. The aim of this study was to investigate the long-term reliability of a multimodal QST assessment in healthy people, with testing conducted on 3 occasions over 4 months. Forty-two healthy people were enrolled in the study. Static and dynamic tests were performed, including cold and heat pain threshold (CPT, HPT), mechanical wind-up [wind-up ratio (WUR)], pressure pain threshold (PPT), 2-point discrimination (TPD), and conditioned pain modulation (CPM). Systematic bias, relative reliability and agreement were analysed using repeated measure analysis of variance, intraclass correlation coefficients (ICCs3,1) and SE of the measurement (SEM), respectively. Static QST (CPT, HPT, PPT, and TPD) showed good-to-excellent reliability (ICCs: 0.68-0.90). Dynamic QST (WUR and CPM) showed poor-to-good reliability (ICCs: 0.35-0.61). A significant linear decrease over time was observed for mechanical QST at the back (PPT and TPD) and for CPM (P < 0.01). Static QST were stable over a period of 4 months; however, a small systematic decrease over time has been observed for mechanical QST. Dynamic QST showed considerable variability over time; in particular, CPM using PPT as the test stimulus did not show adequate reliability, suggesting that this test paradigm may be less useful for monitoring individuals over time.
AB - Quantitative sensory tests (QSTs) have been increasingly used to investigate alterations in somatosensory function in a wide range of painful conditions. The interpretation of these findings is based on the assumption that the measures are stable and reproducible. To date, reliability of QST has been investigated for short test-retest intervals. The aim of this study was to investigate the long-term reliability of a multimodal QST assessment in healthy people, with testing conducted on 3 occasions over 4 months. Forty-two healthy people were enrolled in the study. Static and dynamic tests were performed, including cold and heat pain threshold (CPT, HPT), mechanical wind-up [wind-up ratio (WUR)], pressure pain threshold (PPT), 2-point discrimination (TPD), and conditioned pain modulation (CPM). Systematic bias, relative reliability and agreement were analysed using repeated measure analysis of variance, intraclass correlation coefficients (ICCs3,1) and SE of the measurement (SEM), respectively. Static QST (CPT, HPT, PPT, and TPD) showed good-to-excellent reliability (ICCs: 0.68-0.90). Dynamic QST (WUR and CPM) showed poor-to-good reliability (ICCs: 0.35-0.61). A significant linear decrease over time was observed for mechanical QST at the back (PPT and TPD) and for CPM (P < 0.01). Static QST were stable over a period of 4 months; however, a small systematic decrease over time has been observed for mechanical QST. Dynamic QST showed considerable variability over time; in particular, CPM using PPT as the test stimulus did not show adequate reliability, suggesting that this test paradigm may be less useful for monitoring individuals over time.
KW - quantitative sensory testing
KW - reliability
KW - sensory testing
KW - conditioned pain modulation
KW - pain threshold
UR - http://www.scopus.com/inward/record.url?scp=85021439189&partnerID=8YFLogxK
U2 - 10.1097/j.pain.0000000000000901
DO - 10.1097/j.pain.0000000000000901
M3 - Article
C2 - 28328574
SN - 0304-3959
VL - 158
SP - 1217
EP - 1223
JO - Pain
JF - Pain
IS - 7
ER -