The metabolic basis of whole-organism RNA and phosphorus content

James F. Gillooly*, Andrew P. Allen, James H. Brown, James J. Elser, Carlos Martinez Del Rio, Van M. Savage, Geoffrey B. West, William H. Woodruff, H. Arthur Woods

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

133 Citations (Scopus)


Understanding the storage, flux, and turnover of nutrients in organisms is important for quantifying contributions of biota to biogeochemical cycles. Here we present a model that predicts the storage of phosphorus-rich RNA and whole-body phosphorus content in eukaryotes based on the mass- and temperature-dependence of ATP production in mitochondria. Data from a broad assortment of eukaryotes support the model's two main predictions. First, whole-body RNA concentration is proportional to mitochondrial density and consequently scales with body mass to the -1/4 power. Second, whole-body phosphorus content declines with increasing body mass in eukaryotic unicells but approaches a relatively constant value in large multicellular animals because the fraction of phosphorus in RNA decreases relative to the fraction in other pools. Extension of the model shows that differences in the flux of RNA-associated phosphorus are due to the size dependencies of metabolic rate and RNA concentration. Thus, the model explicitly links two biological currencies at the individual level: energy in the form of ATP and materials in the form of phosphorus, both of which are critical to the functioning of ecosystems. The model provides a framework for linking attributes of individuals to the storage and flux of phosphorus in ecosystems.

Original languageEnglish
Pages (from-to)11923-11927
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number33
Publication statusPublished - 16 Aug 2005
Externally publishedYes


  • Allometry
  • Growth rate hypothesis
  • Metabolic theory of ecology
  • Stoichiometry


Dive into the research topics of 'The metabolic basis of whole-organism RNA and phosphorus content'. Together they form a unique fingerprint.

Cite this