Projects per year
Abstract
The endoplasmic reticulum (ER) and mitochondria connect at multiple contact sites to form a unique cellular compartment, termed the 'mitochondria-associated ER membranes' (MAMs). MAMs are hubs for signalling pathways that regulate cellular homeostasis and survival, metabolism, and sensitivity to apoptosis. MAMs are therefore involved in vital cellular functions, but they are dysregulated in several human diseases. Whilst MAM dysfunction is increasingly implicated in the pathogenesis of neurodegenerative diseases, its role in amyotrophic lateral sclerosis (ALS) is poorly understood. However, in ALS both ER and mitochondrial dysfunction are well documented pathophysiological events. Moreover, alterations to lipid metabolism in neurons regulate processes linked to neurodegenerative diseases, and a link between dysfunction of lipid metabolism and ALS has also been proposed. In this review we discuss the structural and functional relevance of MAMs in ALS and how targeting MAM could be therapeutically beneficial in this disorder.
Original language | English |
---|---|
Pages (from-to) | 105-113 |
Number of pages | 9 |
Journal | Seminars in Cell and Developmental Biology |
Volume | 112 |
DOIs | |
Publication status | Published - Apr 2021 |
Keywords
- ALS
- Lipid homeostasis
- MAM dysfunction
Fingerprint
Dive into the research topics of 'The mitochondrial-associated ER membrane (MAM) compartment and its dysregulation in amyotrophic lateral sclerosis (ALS)'. Together they form a unique fingerprint.Projects
- 2 Active
-
Developing insight into the molecular origins of familial and sporadic frontotemporal dementia and amyotrophic lateral sclerosis
Blair, I., Atkin, J., Chung, R., Guillemin, G., Ooi, L., Denis, B., Molloy, M., Yerbury, J., Cole, N., Karl, T. & Wilson, W.
1/01/16 → …
Project: Research
-
Disruption to intracellular trafficking as a central pathogenic mechanism in amyotrophic lateral sclerosis
Atkin, J., Cole, N., Chung, R., Rizos, H. & Bell, T.
1/01/15 → …
Project: Research