TY - JOUR
T1 - The p38-MK2-HuR pathway potentiates EGFRvIII-IL-1β-driven IL-6 secretion in glioblastoma cells
AU - Gurgis, F. M S
AU - Yeung, Y. T.
AU - Tang, M. X M
AU - Heng, B.
AU - Buckland, M.
AU - Ammit, A. J.
AU - Haapasalo, J.
AU - Haapasalo, H.
AU - Guillemin, G. J.
AU - Grewal, T.
AU - Munoz, L.
PY - 2015/5/28
Y1 - 2015/5/28
N2 - The microenvironment of glioblastoma (GBM) contains high levels of inflammatory cytokine interleukin 6 (IL-6), which contributes to promote tumour progression and invasion. The common epidermal growth factor receptor variant III (EGFRvIII) mutation in GBM is associated with significantly higher levels of IL-6. Furthermore, elevated IL-1β levels in GBM tumours are also believed to activate GBM cells and enhance IL-6 production. However, the crosstalk between these intrinsic and extrinsic factors within the oncogene-microenvironment of GBM causing overproduction of IL-6 is poorly understood. Here, we show that EGFRvIII potentiates IL-1β-induced IL-6 secretion from GBM cells. Importantly, exacerbation of IL-6 production is most effectively attenuated in EGFRvIII-expressing GBM cells with inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2). Enhanced IL-6 production and increased sensitivity toward pharmacological p38 MAPK and MK2 inhibitors in EGFRvIII-expressing GBM cells is associated with increased MK2-dependent nuclear-cytoplasmic shuttling and accumulation of human antigen R (HuR), an IL-6 mRNA-stabilising protein, in the cytosol. IL-1β-stimulated activation of the p38 MAPK-MK2-HuR pathway significantly enhances IL-6 mRNA stability in GBM cells carrying EGFRvIII. Further supporting a role for the p38 MAPK-MK2-HuR pathway in the development of inflammatory environment in GBM, activated MK2 is found in more than 50% of investigated GBM tissues and correlates with lower grade and secondary GBMs. Taken together, p38 MAPK-MK2-HuR signalling may enhance the potential of intrinsic (EGFRvIII) and extrinsic (IL-1β) factors to develop an inflammatory GBM environment. Hence, further improvement of brain-permeable and anti-inflammatory inhibitors targeting p38 MAPK, MK2 and HuR may combat progression of lower grade gliomas into aggressive GBMs.
AB - The microenvironment of glioblastoma (GBM) contains high levels of inflammatory cytokine interleukin 6 (IL-6), which contributes to promote tumour progression and invasion. The common epidermal growth factor receptor variant III (EGFRvIII) mutation in GBM is associated with significantly higher levels of IL-6. Furthermore, elevated IL-1β levels in GBM tumours are also believed to activate GBM cells and enhance IL-6 production. However, the crosstalk between these intrinsic and extrinsic factors within the oncogene-microenvironment of GBM causing overproduction of IL-6 is poorly understood. Here, we show that EGFRvIII potentiates IL-1β-induced IL-6 secretion from GBM cells. Importantly, exacerbation of IL-6 production is most effectively attenuated in EGFRvIII-expressing GBM cells with inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) and MAPK-activated protein kinase 2 (MK2). Enhanced IL-6 production and increased sensitivity toward pharmacological p38 MAPK and MK2 inhibitors in EGFRvIII-expressing GBM cells is associated with increased MK2-dependent nuclear-cytoplasmic shuttling and accumulation of human antigen R (HuR), an IL-6 mRNA-stabilising protein, in the cytosol. IL-1β-stimulated activation of the p38 MAPK-MK2-HuR pathway significantly enhances IL-6 mRNA stability in GBM cells carrying EGFRvIII. Further supporting a role for the p38 MAPK-MK2-HuR pathway in the development of inflammatory environment in GBM, activated MK2 is found in more than 50% of investigated GBM tissues and correlates with lower grade and secondary GBMs. Taken together, p38 MAPK-MK2-HuR signalling may enhance the potential of intrinsic (EGFRvIII) and extrinsic (IL-1β) factors to develop an inflammatory GBM environment. Hence, further improvement of brain-permeable and anti-inflammatory inhibitors targeting p38 MAPK, MK2 and HuR may combat progression of lower grade gliomas into aggressive GBMs.
UR - http://www.scopus.com/inward/record.url?scp=84930081017&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/nhmrc/510294
UR - http://purl.org/au-research/grants/nhmrc/1025637
UR - http://purl.org/au-research/grants/arc/FT120100397
U2 - 10.1038/onc.2014.225
DO - 10.1038/onc.2014.225
M3 - Article
C2 - 25088200
AN - SCOPUS:84930081017
VL - 34
SP - 2934
EP - 2942
JO - Oncogene
JF - Oncogene
SN - 0950-9232
IS - 22
ER -