The role of landscape setting in minimizing hydrogeomorphic impacts of flow regulation

H. E. Reid*, G. J. Brierley, K. Mcfarlane, S. E. Coleman, S. Trowsdale

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


The Tongariro Power Development Scheme (TPDS) is used to regulate flow in the headwaters of the largest catchment on the North Island of New Zealand (the Waikato). Two small dams, the Rangipo Dam and the Poutu Intake Dam, were constructed in 1973 and 1983. The flow regime of the river is managed to divert freshes into the power scheme, but allows flows larger than 100 m3 s-1 to be released, to rework and transport sediment through the catchment. Analysis of aerial photos and maps spanning 1928 to 2007, alongside field measurements, show that there have been few hydrogeomorphic adjustments since dam construction. This includes limited changes to channel geometry, channel planform and bed material organization immediately downstream of the dams. In addition, offsite effects are minimal, both 500 m downstream of each dam, and in the more sensitive, less confined reaches in the lower catchment (11 km downstream of the Poutu Intake dam). The limited changes can be attributed to the locations of the dams within reaches characterised by bedrock gorges and confined within terraces. These locations act to flush sediments and impose margins that allow minimal adjustment of the channel. Bed material within this reach is characterised by the presence of a boulder lag. This is sourced from long-term incision into lahar deposits, and acts to limit the rate of incision, creating a steep and stable base upon which active fractions are transported. Just as importantly, significant storage in the low-relief volcanic plateau located in the upper catchment acts to disconnect and store the high sediment yields generated by active volcanic cones in the western sub-catchment upstream of the dams. This limits the rate of sediment supply to regulated reaches. Findings from this study show that analysis of reach-scale controls is essential in framing dam site locations in relation to the distribution of reaches and landscape units across the catchment. In this instance, tributary inputs downstream of the dams do not replenish the sediment and flow removed at the dam locations, as has been observed in other regulated systems. Rather, the river itself is resilient to change and flow variability is well managed allowing geomorphically effective floods to occur. Landscape setting is a key consideration in determining the hydrogeomorphic impact of flow regulation.

Original languageEnglish
Pages (from-to)149-161
Number of pages13
JournalInternational Journal of Sediment Research
Issue number2
Publication statusPublished - Jun 2013
Externally publishedYes


  • Channel planform
  • Flow regulation
  • Landscape connectivity
  • Landscape setting
  • Sediment storage


Dive into the research topics of 'The role of landscape setting in minimizing hydrogeomorphic impacts of flow regulation'. Together they form a unique fingerprint.

Cite this