The role of the Ord Arid Intrusion in the historical and contemporary genetic division of long-tailed finch subspecies in northern Australia

Lee Ann Rollins*, Nina Svedin, Sarah R. Pryke, Simon C. Griffith

*Corresponding author for this work

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The effect of separation by biogeographic features followed by secondary contact can blur taxonomic boundaries and produce complex genetic signatures. We analyzed population structure and gene flow across the range of the long-tailed finch (Poephila acuticauda) in northern Australia (1) to test the hypothesis that Ord Arid Intrusion acted as the causative barrier that led to divergence of P. acuticauda subspecies, (2) to determine whether genetic data support the presence of a gradual cline across the range or a sudden shift, both of which have been suggested based on morphological data, and (3) to estimate levels of contemporary gene flow within this species complex.We collected samples from 302 individuals from 10 localities. Analyses of 12 microsatellite loci and sequence data from333 base pairs of the mitochondrial control region were used to estimate population structure and gene flow, using analysis of molecular variance (AMOVA), haplotype network analysis, frequency statistics, and clustering methods. Mitochondrial sequence data indicated the presence of three genetic groups (regions) across the range of P. acuticauda. Genetic diversity was highest in the east and lowest in the west. The Ord Arid Intrusion appears to have functioned as a biogeographic barrier in the past, according to mtDNA evidence presented here and evidence from previous studies. The absence of isolation by distance between adjacent regions and the lack of population genetic structure of mtDNA within regions indicates that genetic changes across the range of P. acuticauda subspecies are characterized by discrete breaks between regions. While microsatellite data indicate a complete absence of genetic structure across this species' range, it appears unlikely that this results from high levels of gene flow. Mitochondrial data do not support the presence of contemporary gene flow across the range of this species.

Original languageEnglish
Pages (from-to)1208-1219
Number of pages12
JournalEcology and Evolution
Volume2
Issue number6
DOIs
Publication statusPublished - 2012

Fingerprint Dive into the research topics of 'The role of the Ord Arid Intrusion in the historical and contemporary genetic division of long-tailed finch subspecies in northern Australia'. Together they form a unique fingerprint.

  • Cite this