The roles of basolateral amygdala parvalbumin neurons in fear learning

Joanna Oi Yue Yau, Chanchanok Chaichim, John M. Power, Gavan P. McNally

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
4 Downloads (Pure)

Abstract

The basolateral amygdala (BLA) is obligatory for fear learning. This learning is linked to BLA excitatory projection neurons whose activity is regulated by complex networks of inhibitory interneurons, dominated by parvalbumin (PV)-expressing GABAergic neurons. The roles of these GABAergic interneurons in learning to fear and learning not to fear, activity profiles of these interneurons across the course of fear learning, and whether or how these change across the course of learning all remain poorly understood. Here, we used PV cell-type-specific recording and manipulation approaches in male transgenic PV-Cre rats during pavlovian fear conditioning to address these issues. We show that activity of BLA PV neurons during the moments of aversive reinforcement controls fear learning about aversive events, but activity during moments of nonreinforcement does not control fear extinction learning. Furthermore, we show expectation-modulation of BLA PV neurons during fear learning, with greater activity to an unexpected than expected aversive unconditioned stimulus (US). This expectation-modulation was specifically because of BLA PV neuron sensitivity to aversive prediction error. Finally, we show that BLA PV neuron function in fear learning is conserved across these variations in prediction error. We suggest that aversive prediction-error modulation of PV neurons could enable BLA fear-learning circuits to retain selectivity for specific sensory features of aversive USs despite variations in the strength of US inputs, thereby permitting the rapid updating of fear associations when these sensory features change.SIGNIFICANCE STATEMENT The capacity to learn about sources of danger in the environment is essential for survival. This learning depends on complex microcircuitries of inhibitory interneurons in the basolateral amygdala. Here, we show that parvalbumin-positive GABAergic interneurons in the rat basolateral amygdala are important for fear learning during moments of danger, but not for extinction learning during moments of safety, and that the activity of these neurons is modulated by expectation of danger. This may enable fear-learning circuits to retain selectivity for specific aversive events across variations in expectation, permitting the rapid updating of learning when aversive events change.

Original languageEnglish
Pages (from-to)9223-9234
Number of pages12
JournalThe Journal of Neuroscience
Volume41
Issue number44
DOIs
Publication statusPublished - 3 Nov 2021
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • amygdala
  • blocking
  • fear
  • parvalbumin
  • prediction error

Fingerprint

Dive into the research topics of 'The roles of basolateral amygdala parvalbumin neurons in fear learning'. Together they form a unique fingerprint.

Cite this