The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys

Jesse Van De Sande*, Sam P. Vaughan, Luca Cortese, Nicholas Scott, Joss Bland-Hawthorn, Scott M. Croom, Claudia D. P. Lagos, Sarah Brough, Julia J. Bryant, Julien Devriendt, Yohan Dubois, Francesco D'Eugenio, Caroline Foster, Amelia Fraser-Mckelvie, Katherine E. Harborne, Jon S. Lawrence, Sree Oh, Matt S. Owers, Adriano Poci, Rhea-Silvia RemusSamuel N. Richards, Felix Schulze, Sarah M. Sweet, Mathew R. Varidel, Charlotte Welker

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)
8 Downloads (Pure)

Abstract

Large galaxy samples from multiobject integral field spectroscopic (IFS) surveys now allow for a statistical analysis of the z ∼0 galaxy population using resolved kinematic measurements. However, the improvement in number statistics comes at a cost, with multiobject IFS survey more severely impacted by the effect of seeing and lower signal-to-noise ratio. We present an analysis of ∼1800 galaxies from the SAMI Galaxy Survey taking into account these effects. We investigate the spread and overlap in the kinematic distributions of the spin parameter proxy λRe as a function of stellar mass and ellipticity ϵe. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with kinemetry show considerable overlap in the λRe-ϵe diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in λRe space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed λRe-log (M/M) distribution. By allowing the mixture probability to vary as a function of mass, we investigate whether the data are best fit with a single kinematic distribution or with two. Below log (M/M) ∼10.5, a single beta distribution is sufficient to fit the complete λRe distribution, whereas a second beta distribution is required above log (M/M) ∼10.5 to account for a population of low-λRe galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique information provided by visual classification of galaxy kinematic maps should not be disregarded in future studies. Applied to mock-observations from different cosmological simulations, the mixture model also predicts bimodal λRe distributions, albeit with different positions of the λRe peaks. Our analysis validates the conclusions from previous, smaller IFS surveys, but also demonstrates the importance of using selection criteria for identifying different kinematic classes that are dictated by the quality and resolution of the observed or simulated data.

Original languageEnglish
Pages (from-to)3078-3106
Number of pages29
JournalMonthly Notices of the Royal Astronomical Society
Volume505
Issue number2
DOIs
Publication statusPublished - 1 Aug 2021

Bibliographical note

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Volume 505, Issue 2, August 2021, Pages 3078–3106, https://doi.org/10.1093/mnras/stab1490. Copyright 2021 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

Keywords

  • cosmology: observations
  • galaxies: evolution
  • galaxies: formation
  • galaxies: kinematics and dynamics
  • galaxies: stellar content
  • galaxies: structure

Fingerprint

Dive into the research topics of 'The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys'. Together they form a unique fingerprint.

Cite this