The stability of a near-adiabatic endex batch CSTR reactor

A. C. Mcintosh*, B. F. Gray, G. C. Wake, R. Ball

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    2 Citations (Scopus)


    Many tens of serious incidents involving reactors occur in the developed countries each year. The disaster at the chemical plant in Bhopal, India in 1984 was particularly notable where a thermal runaway process led to more than 3000 tragic fatalities from the cloud of extremely toxic methyl isocyanate that boiled out of a storage tank. This signalled the design of special types of chemical reactors to reduce the risk of thermal runaway by planning (at the design stage) integral safety and thermal stabilization mechanisms. The Endex CSTR (continuously stirred tank reactor) proposed by Gray and Ball [3] involves a reactor in two parts with heat exchange allowed between them. The two parts of the reactor operate side by side in tandem, such that the thermal runaway of one part is offset by an endothermic reaction in the other reactor-hence the term 'endex'. It is found that the adiabatic endex system has a large region of parameter space where the operation can be made safe. However adiabatic conditions rely on the continuous supply of reactants to the endothermic side of the reactor, for operation of the system. The risks involved are such that it is always safer to operate batch reactors in a non-adiabatic mode. Thus we consider the limiting case of the approach to adiabatic conditions where although the mathematics produces no oscillatory causes for instability, yet there is a narrow but significant area where the stable solution branch is lost and consequently a persistent and unexpected region of instability in what otherwise appears to be a simple CSTR system.

    Original languageEnglish
    Pages (from-to)59-75
    Number of pages17
    JournalANZIAM Journal
    Issue number1
    Publication statusPublished - 2001


    Dive into the research topics of 'The stability of a near-adiabatic endex batch CSTR reactor'. Together they form a unique fingerprint.

    Cite this