The supershell-molecular cloud connection: large-scale stellar feedback and the formation of the molecular ism

J. R. Dawson*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

18 Citations (Scopus)

Abstract

The accumulation, compression, and cooling of the ambient interstellar medium (ISM) in large-scale flows powered by OB cluster feedback can drive the production of dense molecular clouds. We review the current state of the field, with a strong focus on the explicit modelling and observation of the neutral ISM. Magnetohydrodynamic simulations of colliding ISM flows provide a strong theoretical framework in which to view feedback-driven cloud formation, as do models of the gravitational fragmentation of expanding shells. Rapid theoretical developments are accompanied by a growing body of observational work that provides good evidence for the formation of molecular gas via stellar feedback both in the Milky Way and the Large Magellanic Cloud. The importance of stellar feedback compared with other major astrophysical drivers of dense gas formation remains to be investigated further, and will be an important target for future work.

Original languageEnglish
Article numbere025
Pages (from-to)1-18
Number of pages18
JournalPublications of the Astronomical Society of Australia
Volume30
DOIs
Publication statusPublished - Jan 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'The supershell-molecular cloud connection: large-scale stellar feedback and the formation of the molecular ism'. Together they form a unique fingerprint.

Cite this