The tidal remnant of an unusually metal-poor globular cluster

Zhen Wan, Geraint F. Lewis*, Ting S. Li, Jeffrey D. Simpson, Sarah L. Martell, Daniel B. Zucker, Jeremy R. Mould, Denis Erkal, Andrew B. Pace, Dougal Mackey, Alexander P. Ji, Sergey E. Koposov, Kyler Kuehn, Nora Shipp, Eduardo Balbinot, Joss Bland-Hawthorn, Andrew R. Casey, Gary S. Da Costa, Prajwal Kafle, Sanjib SharmaGayandhi M. De Silva

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


Globular clusters are some of the oldest bound stellar structures observed in the Universe. They are ubiquitous in large galaxies and are believed to trace intense star formation events and the hierarchical build-up of structure. Observations of globular clusters in the Milky Way, and a wide variety of other galaxies, have found evidence for a 'metallicity floor', whereby no globular clusters are found with chemical (metal) abundances below approximately 0.3 to 0.4 per cent of that of the Sun. The existence of this metallicity floor may reflect a minimum mass and a maximum redshift for surviving globular clusters to form, both critical components for understanding the build-up of mass in the universe. Here we report measurements from the Southern Stellar Streams Spectroscopic Survey of the spatially thin, dynamically cold Phoenix stellar stream in the halo of the Milky Way. The properties of the Phoenix stream are consistent with it being the tidally disrupted remains of a globular cluster. However, its metal abundance ([Fe/H] = -2.7) is substantially below that of the empirical metallicity floor. The Phoenix stream thus represents the debris of the most metal-poor globular cluster discovered so far, and its progenitor is distinct from the present-day globular cluster population in the local Universe. Its existence implies that globular clusters below the metallicity floor have probably existed, but were destroyed during Galactic evolution.
Original languageEnglish
Pages (from-to)768-770
Number of pages3
Issue number7818
Publication statusPublished - 30 Jul 2020


Dive into the research topics of 'The tidal remnant of an unusually metal-poor globular cluster'. Together they form a unique fingerprint.

Cite this