The volcanic history of central Elysium Planitia

Implications for martian magmatism

J. Vaucher, D. Baratoux*, N. Mangold, P. Pinet, K. Kurita, M. Grégoire

*Corresponding author for this work

Research output: Contribution to journalArticle

69 Citations (Scopus)


Central Elysium Planitia (CEP) is located south of Elysium Mons. Back to the era of the Viking orbiters, clues accumulated in favor of recent volcanism in relation with ground water release and the formation of long sub-parallel fissures. Four aqueous flood channel systems emanate from linear fissures. Recent eruptions of low viscosity lavas originate from these fissures and from low shield volcanoes. The objective of this paper is to constrain the volcanic history of this region, and to determine the chronological relationships with fluvial/erosional processes. New observations (e.g., new shield volcanoes and one new fluvial event) are summarized on a context map. Thirty-five surfaces have been dated from the count of about 15,000 impact craters. Ages have been cross-checked with relative stratigraphy when possible. A probabilistic approach has been introduced to compare similar ages and define periods of volcanic activity. Our results confirm that some volcanic features are extremely recent (∼2 My). Active periods are found at 2.5-3 My, 4.3 My, 13.5-16.2 My, 19 My, 21-32 My, 58 My, 71 My, 85-95 My, 134 My, 173 My and 234 My, not excluding the possibility that some of the gaps would be filled with additional crater counts. The volcanic activity thus extended for at least the last 250 My. The lava volumes have been estimated from the topographic modeling of the floor of depressions filled up by volcanic products, including the volumes of several large crater cavities buried under lavas (>20% of the total volume). Our new estimation of the total lava volume is 1.5 ± 0.2 × 105 km3. This value corresponds to an average thickness of one hundred meters of lavas for the young volcanic plain. As a consequence, the total eruption rate at CEP, defined as the total volume of lava divided by the time of emplacement 1.4 × 10-2-1.8 × 10-2 m3/s is lower than values typically estimated for terrestrial hot spots or large igneous provinces, suggesting longer inactive periods. The concept of mantle plumes responsible for terrestrial flood volcanism may not be applicable to the case of CEP and the mechanism proposed in Schumacher and Dreuer (2007) offers a plausible alternative to explain our observations.

Original languageEnglish
Pages (from-to)418-442
Number of pages25
Issue number2
Publication statusPublished - Dec 2009
Externally publishedYes


  • Mars
  • Volcanism

Fingerprint Dive into the research topics of 'The volcanic history of central Elysium Planitia: Implications for martian magmatism'. Together they form a unique fingerprint.

  • Cite this