The weighted groundwater health index: Improving the monitoring and management of groundwater resources

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Increased global demand for groundwater has resulted in the need to measure and monitor this resource. Rather than monitoring groundwater simply though water chemistry and levels, which provides a ‘snapshot’ of the conditions at any given time, a more holistic approach to managing groundwater resources and their changes over time is needed. Korbel & Hose (2011) introduced the first structured framework for measuring groundwater health – the Groundwater Health Index (GHI). This multimetric, two-tiered framework uses biotic and abiotic components of the groundwater ecosystem to measure and identify ecosystem health. The framework can be used to classify impacted from non-impacted groundwaters, however it has certain limitations. With increased research and associated knowledge of groundwater ecosystems in recent times, it is now timely to attempt to build on the GHI framework. This paper refines and improves the GHI by incorporating a weighting system to account for natural factors contributing to variations in biotic distribution and is tested on data within four geologically similar alluvial aquifers in intensively irrigated agricultural areas of New South Wales and Queensland, Australia. Using a combination of microbial, stygofaunal, water chemistry and environmental indicators, the ‘weighted GHI’ framework was able to discriminate three distinct ecosystem health classifications; that of ‘similar to reference’(displaying reference-like condition) ‘mild deviation from reference’ (sites failing to meet between 2 and 3 benchmarks) and ‘major deviation from reference’ (sites with more than four benchmarks exceeded). The framework indicated that groundwater health deviated from reference condition in all four catchments studied, with irrigated sites consistently displaying deviations from reference ecosystem health. Tier 2 benchmarks were set using results from the Gwydir River, and were tested on the adjacent Namoi River catchment, the Condamine and Lower Macquarie catchments. Results indicated that ecosystem health benchmarks may be associate with aquifer typology, rather than being applicable only for local areas.

LanguageEnglish
Pages164-181
Number of pages18
JournalEcological Indicators
Volume75
DOIs
Publication statusPublished - 1 Apr 2017

Fingerprint

groundwater resource
groundwater
monitoring
ecosystem health
catchment
hydrochemistry
water chemistry
aquifers
index
health
Ground water
Health
Monitoring
Resources
aquifer
hoses
environmental indicator
ecosystem
holistic approach
rivers

Keywords

  • Biomonitoring
  • Ecosystem health
  • Groundwater
  • Groundwater assessment
  • Stygofauna

Cite this

@article{dc2bcfb78b5d408899305132cfd4082f,
title = "The weighted groundwater health index: Improving the monitoring and management of groundwater resources",
abstract = "Increased global demand for groundwater has resulted in the need to measure and monitor this resource. Rather than monitoring groundwater simply though water chemistry and levels, which provides a ‘snapshot’ of the conditions at any given time, a more holistic approach to managing groundwater resources and their changes over time is needed. Korbel & Hose (2011) introduced the first structured framework for measuring groundwater health – the Groundwater Health Index (GHI). This multimetric, two-tiered framework uses biotic and abiotic components of the groundwater ecosystem to measure and identify ecosystem health. The framework can be used to classify impacted from non-impacted groundwaters, however it has certain limitations. With increased research and associated knowledge of groundwater ecosystems in recent times, it is now timely to attempt to build on the GHI framework. This paper refines and improves the GHI by incorporating a weighting system to account for natural factors contributing to variations in biotic distribution and is tested on data within four geologically similar alluvial aquifers in intensively irrigated agricultural areas of New South Wales and Queensland, Australia. Using a combination of microbial, stygofaunal, water chemistry and environmental indicators, the ‘weighted GHI’ framework was able to discriminate three distinct ecosystem health classifications; that of ‘similar to reference’(displaying reference-like condition) ‘mild deviation from reference’ (sites failing to meet between 2 and 3 benchmarks) and ‘major deviation from reference’ (sites with more than four benchmarks exceeded). The framework indicated that groundwater health deviated from reference condition in all four catchments studied, with irrigated sites consistently displaying deviations from reference ecosystem health. Tier 2 benchmarks were set using results from the Gwydir River, and were tested on the adjacent Namoi River catchment, the Condamine and Lower Macquarie catchments. Results indicated that ecosystem health benchmarks may be associate with aquifer typology, rather than being applicable only for local areas.",
keywords = "Biomonitoring, Ecosystem health, Groundwater, Groundwater assessment, Stygofauna",
author = "Korbel, {Kathryn L.} and Hose, {Grant C.}",
year = "2017",
month = "4",
day = "1",
doi = "10.1016/j.ecolind.2016.11.039",
language = "English",
volume = "75",
pages = "164--181",
journal = "Ecological Indicators",
issn = "1470-160X",
publisher = "Elsevier",

}

The weighted groundwater health index : Improving the monitoring and management of groundwater resources. / Korbel, Kathryn L.; Hose, Grant C.

In: Ecological Indicators, Vol. 75, 01.04.2017, p. 164-181.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - The weighted groundwater health index

T2 - Ecological Indicators

AU - Korbel, Kathryn L.

AU - Hose, Grant C.

PY - 2017/4/1

Y1 - 2017/4/1

N2 - Increased global demand for groundwater has resulted in the need to measure and monitor this resource. Rather than monitoring groundwater simply though water chemistry and levels, which provides a ‘snapshot’ of the conditions at any given time, a more holistic approach to managing groundwater resources and their changes over time is needed. Korbel & Hose (2011) introduced the first structured framework for measuring groundwater health – the Groundwater Health Index (GHI). This multimetric, two-tiered framework uses biotic and abiotic components of the groundwater ecosystem to measure and identify ecosystem health. The framework can be used to classify impacted from non-impacted groundwaters, however it has certain limitations. With increased research and associated knowledge of groundwater ecosystems in recent times, it is now timely to attempt to build on the GHI framework. This paper refines and improves the GHI by incorporating a weighting system to account for natural factors contributing to variations in biotic distribution and is tested on data within four geologically similar alluvial aquifers in intensively irrigated agricultural areas of New South Wales and Queensland, Australia. Using a combination of microbial, stygofaunal, water chemistry and environmental indicators, the ‘weighted GHI’ framework was able to discriminate three distinct ecosystem health classifications; that of ‘similar to reference’(displaying reference-like condition) ‘mild deviation from reference’ (sites failing to meet between 2 and 3 benchmarks) and ‘major deviation from reference’ (sites with more than four benchmarks exceeded). The framework indicated that groundwater health deviated from reference condition in all four catchments studied, with irrigated sites consistently displaying deviations from reference ecosystem health. Tier 2 benchmarks were set using results from the Gwydir River, and were tested on the adjacent Namoi River catchment, the Condamine and Lower Macquarie catchments. Results indicated that ecosystem health benchmarks may be associate with aquifer typology, rather than being applicable only for local areas.

AB - Increased global demand for groundwater has resulted in the need to measure and monitor this resource. Rather than monitoring groundwater simply though water chemistry and levels, which provides a ‘snapshot’ of the conditions at any given time, a more holistic approach to managing groundwater resources and their changes over time is needed. Korbel & Hose (2011) introduced the first structured framework for measuring groundwater health – the Groundwater Health Index (GHI). This multimetric, two-tiered framework uses biotic and abiotic components of the groundwater ecosystem to measure and identify ecosystem health. The framework can be used to classify impacted from non-impacted groundwaters, however it has certain limitations. With increased research and associated knowledge of groundwater ecosystems in recent times, it is now timely to attempt to build on the GHI framework. This paper refines and improves the GHI by incorporating a weighting system to account for natural factors contributing to variations in biotic distribution and is tested on data within four geologically similar alluvial aquifers in intensively irrigated agricultural areas of New South Wales and Queensland, Australia. Using a combination of microbial, stygofaunal, water chemistry and environmental indicators, the ‘weighted GHI’ framework was able to discriminate three distinct ecosystem health classifications; that of ‘similar to reference’(displaying reference-like condition) ‘mild deviation from reference’ (sites failing to meet between 2 and 3 benchmarks) and ‘major deviation from reference’ (sites with more than four benchmarks exceeded). The framework indicated that groundwater health deviated from reference condition in all four catchments studied, with irrigated sites consistently displaying deviations from reference ecosystem health. Tier 2 benchmarks were set using results from the Gwydir River, and were tested on the adjacent Namoi River catchment, the Condamine and Lower Macquarie catchments. Results indicated that ecosystem health benchmarks may be associate with aquifer typology, rather than being applicable only for local areas.

KW - Biomonitoring

KW - Ecosystem health

KW - Groundwater

KW - Groundwater assessment

KW - Stygofauna

UR - http://www.scopus.com/inward/record.url?scp=85007418005&partnerID=8YFLogxK

U2 - 10.1016/j.ecolind.2016.11.039

DO - 10.1016/j.ecolind.2016.11.039

M3 - Article

VL - 75

SP - 164

EP - 181

JO - Ecological Indicators

JF - Ecological Indicators

SN - 1470-160X

ER -