Theoretically guaranteed bidirectional data rectification for robust sequential recommendation

Yatong Sun, Xiaochun Yang*, Zhu Sun*, Bin Wang, Yan Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

Abstract

Sequential recommender systems (SRSs) are typically trained to predict the next item as the target given its preceding (and succeeding) items as the input. Such a paradigm assumes that every input-target pair is reliable for training. However, users can be induced to click on items that are inconsistent with their true preferences, resulting in unreliable instances, i.e., mismatched input-target pairs. Current studies on mitigating this issue suffer from two limitations: (i) they discriminate instance reliability according to models trained with unreliable data, yet without theoretical guarantees that such a seemingly contradictory solution can be effective; and (ii) most methods can only tackle either unreliable input or targets but fail to handle both simultaneously. To fill the gap, we theoretically unveil the relationship between SRS predictions and instance reliability, whereby two error-bounded strategies are proposed to rectify unreliable targets and input, respectively. On this basis, we devise a model-agnostic Bidirectional Data Rectification (BirDRec) framework, which can be flexibly implemented with most existing SRSs for robust training against unreliable data. Additionally, a rectification sampling strategy is devised and a self-ensemble mechanism is adopted to reduce the (time and space) complexity of BirDRec. Extensive experiments on four real-world datasets verify the generality, effectiveness, and efficiency of our proposed BirDRec.

Original languageEnglish
Title of host publication37th Conference on Neural Information Processing Systems (NeurIPS 2023)
EditorsA. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
Place of PublicationSan Diego, CA
PublisherNeural Information Processing Systems (NIPS) Foundation
Pages1-13
Number of pages13
Publication statusPublished - 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: 10 Dec 202316 Dec 2023

Publication series

NameAdvances in Neural Information Processing Systems
Volume36

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period10/12/2316/12/23

Fingerprint

Dive into the research topics of 'Theoretically guaranteed bidirectional data rectification for robust sequential recommendation'. Together they form a unique fingerprint.

Cite this