Abstract
The transient thermal lens in a high-average power double metal tungstate Raman laser has been investigated. An external cavity potassium gadolinium tungstate (KGW) laser designed for second-Stokes output was burst-pumped with up to 46 W of average power at a pulse repetition rate of 38 kHz. At low duty-cycle, the laser generated up to 18 W of on-time average Raman power with a conversion efficiency of 40%. At high duty cycle, efficiency is reduced and the near-field beam profile expands in the X1' crystal direction over a period of tens of milliseconds. The evolution of the spatial beam properties occurs in response to the development of a highly astigmatic thermal lens with fast-axis susceptibility of approximately .1.7 m.1 per watt of Raman output power. We show that the likely cause for astigmatism is primarily photo-elastic in origin. Beam circularization was achieved by incorporating an intracavity convex cylindrical lens.
Original language | English |
---|---|
Pages (from-to) | 6707-6718 |
Number of pages | 12 |
Journal | Optics Express |
Volume | 22 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2014 |