TY - JOUR
T1 - Thermochemical production of bio-oil
T2 - a review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products
AU - Kumar, R.
AU - Strezov, V.
PY - 2021/1
Y1 - 2021/1
N2 - Bio-oil produced from biomass pyrolysis and hydrothermal liquefaction is considered as the most sustainable alternative for depleting fossil fuels. However, the poor bio-oil properties, such as high viscosity, presence of solid particles, low calorific value and high instability are restricting its use as a drop-in fuel. The bio-oil properties can be significantly improved using different methods, such as catalytic upgrading, biomass pre-treatment and downstream bio-oil upgrading. This article focusses on the widely used methods for downstream bio-oil upgrading, such as hydrotreatment, solvent addition, emulsification, microfiltration and electrocatalytic hydrogenation. The bio-oil upgrading using non-polar solvents or preparing emulsions using surfactants have shown a significant increase in the calorific values and a considerable decrease in viscosity of the bio-oil. On the other hand, filtration of the bio-oil using membranes can remove the char particles and alkali and alkali earth metals from the bio-oil, consequently, leading to higher stability of the bio-oil. Electrocatalytic hydrogenation of the bio-oil has shown promising results to increase the content of hydrocarbons and increased pH by removing the carbonyl group-containing compounds from the bio-oil. The bio-oil can also be upgraded to other clean fuels, such as H
2 using steam reforming approach, has been critically reviewed. Basic principles of the processes and effects of different parameters on bio-oil upgrading are thoroughly discussed. In addition, techno-economic analysis, policy analysis, challenges and future recommendations related to downstream processes are provided in the article. Overall, this review article provides critical information about downstream bio-oil upgrading and production of other high value-added fuels.
AB - Bio-oil produced from biomass pyrolysis and hydrothermal liquefaction is considered as the most sustainable alternative for depleting fossil fuels. However, the poor bio-oil properties, such as high viscosity, presence of solid particles, low calorific value and high instability are restricting its use as a drop-in fuel. The bio-oil properties can be significantly improved using different methods, such as catalytic upgrading, biomass pre-treatment and downstream bio-oil upgrading. This article focusses on the widely used methods for downstream bio-oil upgrading, such as hydrotreatment, solvent addition, emulsification, microfiltration and electrocatalytic hydrogenation. The bio-oil upgrading using non-polar solvents or preparing emulsions using surfactants have shown a significant increase in the calorific values and a considerable decrease in viscosity of the bio-oil. On the other hand, filtration of the bio-oil using membranes can remove the char particles and alkali and alkali earth metals from the bio-oil, consequently, leading to higher stability of the bio-oil. Electrocatalytic hydrogenation of the bio-oil has shown promising results to increase the content of hydrocarbons and increased pH by removing the carbonyl group-containing compounds from the bio-oil. The bio-oil can also be upgraded to other clean fuels, such as H
2 using steam reforming approach, has been critically reviewed. Basic principles of the processes and effects of different parameters on bio-oil upgrading are thoroughly discussed. In addition, techno-economic analysis, policy analysis, challenges and future recommendations related to downstream processes are provided in the article. Overall, this review article provides critical information about downstream bio-oil upgrading and production of other high value-added fuels.
KW - Bio-oil upgrading
KW - Hydrotreatment
KW - Solvent addition
KW - Emulsification
KW - Microfiltration
KW - Electrocatalytic hydrogenation
KW - Steam reforming
UR - http://www.scopus.com/inward/record.url?scp=85089007330&partnerID=8YFLogxK
U2 - 10.1016/j.rser.2020.110152
DO - 10.1016/j.rser.2020.110152
M3 - Review article
VL - 135
SP - 1
EP - 31
JO - Renewable and Sustainable Energy Reviews
JF - Renewable and Sustainable Energy Reviews
SN - 1364-0321
M1 - 110152
ER -