Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering

Sajad Bahrami, Nafiseh Baheiraei*, Majid Mohseni, Mehdi Razavi, Atefeh Ghaderi, Behnam Azizi, Navid Rabiee, Mahdi Karimi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)


Myocardial infarction is one of the major causes of mortality throughout the world. Cardiac scaffolds are tissue-engineered structures for the treatment of myocardial infarction and are employed for tissue support and cell delivery to the injured region. In this study, we fabricated nanostructured graphene foams as porous and biocompatible cardiac tissue-engineering scaffolds. Three-dimensional graphene foam and two-dimensional graphene were fabricated using chemical vapor deposition. We showed that the nickel etching had no effect on the structural appearance of the three-dimensional graphene foam. Toxicity of the prepared samples was evaluated on human umbilical vein endothelial cells at 48 h and 72 h and showed no toxic effects on the viability of the cells. Moreover, both samples supported the adhesion and growth of neonatal cardiomyocytes with three-dimensional graphene foam showing a more extensive effect on the expression of the cardiac genes involved in muscle contraction and relaxation (troponin-T) and gap junctions (Connexin 43). Hence, conductive three-dimensional graphene foam with its large surface area and specific surface properties could provide a promising platform for cardiac tissue engineering.

Original languageEnglish
Pages (from-to)74-85
Number of pages12
JournalJournal of Biomaterials Applications
Issue number1
Publication statusPublished - 1 Jul 2019
Externally publishedYes


  • electroactivity
  • graphene foam
  • medical nanotechnology
  • Tissue engineering


Dive into the research topics of 'Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering'. Together they form a unique fingerprint.

Cite this