TY - JOUR
T1 - Three-dimensional hemodynamic design optimization of stents for cerebral aneurysms
AU - Lee, Chang Joon
AU - Srinivas, Karkenahalli
AU - Qian, Yi
PY - 2014/3
Y1 - 2014/3
N2 - Flow-diverting stents occlude aneurysms by diverting the blood flow from entering the aneurysm sac. Their effectiveness is determined by the thrombus formation rate, which depends greatly on stent design. The aim of this study was to provide a general framework for efficient stent design using design optimization methods, with a focus on stent hemodynamics as the starting point. Kriging method was used for completing design optimization. Three different cases of idealized stents were considered, and 40-60 samples from each case were evaluated using computational fluid dynamics. Using maximum velocity and vorticity reduction as objective functions, the optimized designs were identified from the samples. A number of optimized stent designs have been found from optimization, which revealed that a combination of high pore density and thin struts is desired. Additionally, distributing struts near the proximal end of aneurysm neck was found to be effective. The success of the methods and framework devised in this study offers a future possibility of incorporating other disciplines to carry out multidisciplinary design optimization.
AB - Flow-diverting stents occlude aneurysms by diverting the blood flow from entering the aneurysm sac. Their effectiveness is determined by the thrombus formation rate, which depends greatly on stent design. The aim of this study was to provide a general framework for efficient stent design using design optimization methods, with a focus on stent hemodynamics as the starting point. Kriging method was used for completing design optimization. Three different cases of idealized stents were considered, and 40-60 samples from each case were evaluated using computational fluid dynamics. Using maximum velocity and vorticity reduction as objective functions, the optimized designs were identified from the samples. A number of optimized stent designs have been found from optimization, which revealed that a combination of high pore density and thin struts is desired. Additionally, distributing struts near the proximal end of aneurysm neck was found to be effective. The success of the methods and framework devised in this study offers a future possibility of incorporating other disciplines to carry out multidisciplinary design optimization.
UR - http://www.scopus.com/inward/record.url?scp=84902207443&partnerID=8YFLogxK
U2 - 10.1177/0954411914523405
DO - 10.1177/0954411914523405
M3 - Article
C2 - 24525197
AN - SCOPUS:84902207443
SN - 0954-4119
VL - 228
SP - 213
EP - 224
JO - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
JF - Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
IS - 3
ER -