Abstract
Podiform chromitites enclosed in depleted harzburgites of the Luobusa massif (southeastern Tibet) contain diamond and a highly reduced trace-mineral association. Exsolution of diopside and coesite from chromite suggests inversion from the Ca-ferrite structure in the upper part of the mantle transition zone (>400km). However, the trace-element signatures of the chromites are typical of ophiolitic chromitites, implying primary crystallization at shallow depths. Os-Ir nuggets in the chromitites have Re-Os model ages (TRD) of 234 ± 3 Ma, while TRD ages of in situ Ru-Os-Ir sulfides range from 290 to 630 Ma, peaking at ca. 325 Ma. Euhedral zircons in the chromitites give U-Pb ages of 376 ± 7 Ma, εHf = 9.7 ± 4.6, and δ18O = 4.8‰-8.2‰. The sulfide and zircon ages may date formation of the chromitites from boninite-like melts in a supra-subduction-zone environment, while the model ages of Os-Ir nuggets may date local reduction in the transition zone following Devonian subduction. Thermo-mechanical modeling suggests a rapid (≲10 m.y.) rise of the buoyant harzburgites from >400km depth during the early Tertiary and/or Late Cretaceous rollback of the Indian slab. This process may occur in other collision zones; mantle samples from the transition zone may be more widespread than currently recognized.
Original language | English |
---|---|
Pages (from-to) | 179-182 |
Number of pages | 4 |
Journal | Geology |
Volume | 43 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2015 |