Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model

Mehra Haghi, Paul M. Young, Daniela Traini, Ritu Jaiswal, Joyce Gong, Mary Bebawy

Research output: Contribution to journalArticlepeer-review

97 Citations (Scopus)


Background: Although standard protocols for the study of drug delivery in the upper airways using the sub-bronchial epithelial cell line Calu-3 model, particularly that of the air-liquid interface configuration, are readily available, the model remains un-validated with respect to culture conditions, barrier integrity, mucous secretion, and transporter function. With respect to the latter, the significance of functional P-glycoprotein (P-gp) activity in Calu-3 cells has recently been questioned, despite previous reports demonstrating a significant contribution by the same transporter in limiting drug uptake across the pulmonary epithelium. Therefore, the aim of this study was the standardization of this model as a tool for drug discovery. Methods: Calu-3 cells were grown using air-interfaced condition (AIC) on polyester cell culture supports. Monolayers were evaluated for transepithelial electrical resistance (TEER), permeability to the paracellular marker fluorescein sodium (flu-Na), surface P-gp expression, and functionality. Mucous secretion was also identified by alcian blue staining. Results: TEER and permeability values obtained for Calu-3 monolayers were shown to plateau between day 5 and day 21 in culture with values reaching 474 ± 44 ωcm2 and 2.33 ± 0.36 × 10–7 cm/s, respectively, irrespective of the passage number examined. 32.7 ± 1.49% of Calu-3 cells cultured under these conditions detected positive for cell surface P-gp expression from day 7 onwards. Functional cell surface expression was established by rhodamine 123 drug extrusion assays. Conclusion: This study establishes a clear dependence on culture time and passage number for optimal barrier integrity, mucous secretion, and cell-surface P-gp expression and function in Calu-3 cells. Furthermore it provides initial guidelines for the optimization of this model for high throughput screening applications.
Original languageEnglish
Pages (from-to)1207-1214
Number of pages8
JournalDrug Development and Industrial Pharmacy
Issue number10
Publication statusPublished - 2010
Externally publishedYes


  • Calu-3
  • culture conditions
  • P-glycoprotein
  • P-gp
  • respiratory epithelium


Dive into the research topics of 'Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model'. Together they form a unique fingerprint.

Cite this