TY - JOUR
T1 - Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model
AU - Haghi, Mehra
AU - Young, Paul M.
AU - Traini, Daniela
AU - Jaiswal, Ritu
AU - Gong, Joyce
AU - Bebawy, Mary
PY - 2010
Y1 - 2010
N2 - Background: Although standard protocols for the study of drug delivery in the upper airways using the sub-bronchial epithelial cell line Calu-3 model, particularly that of the air-liquid interface configuration, are readily available, the model remains un-validated with respect to culture conditions, barrier integrity, mucous secretion, and transporter function. With respect to the latter, the significance of functional P-glycoprotein (P-gp) activity in Calu-3 cells has recently been questioned, despite previous reports demonstrating a significant contribution by the same transporter in limiting drug uptake across the pulmonary epithelium. Therefore, the aim of this study was the standardization of this model as a tool for drug discovery. Methods: Calu-3 cells were grown using air-interfaced condition (AIC) on polyester cell culture supports. Monolayers were evaluated for transepithelial electrical resistance (TEER), permeability to the paracellular marker fluorescein sodium (flu-Na), surface P-gp expression, and functionality. Mucous secretion was also identified by alcian blue staining. Results: TEER and permeability values obtained for Calu-3 monolayers were shown to plateau between day 5 and day 21 in culture with values reaching 474 ± 44 ωcm2 and 2.33 ± 0.36 × 10–7 cm/s, respectively, irrespective of the passage number examined. 32.7 ± 1.49% of Calu-3 cells cultured under these conditions detected positive for cell surface P-gp expression from day 7 onwards. Functional cell surface expression was established by rhodamine 123 drug extrusion assays. Conclusion: This study establishes a clear dependence on culture time and passage number for optimal barrier integrity, mucous secretion, and cell-surface P-gp expression and function in Calu-3 cells. Furthermore it provides initial guidelines for the optimization of this model for high throughput screening applications.
AB - Background: Although standard protocols for the study of drug delivery in the upper airways using the sub-bronchial epithelial cell line Calu-3 model, particularly that of the air-liquid interface configuration, are readily available, the model remains un-validated with respect to culture conditions, barrier integrity, mucous secretion, and transporter function. With respect to the latter, the significance of functional P-glycoprotein (P-gp) activity in Calu-3 cells has recently been questioned, despite previous reports demonstrating a significant contribution by the same transporter in limiting drug uptake across the pulmonary epithelium. Therefore, the aim of this study was the standardization of this model as a tool for drug discovery. Methods: Calu-3 cells were grown using air-interfaced condition (AIC) on polyester cell culture supports. Monolayers were evaluated for transepithelial electrical resistance (TEER), permeability to the paracellular marker fluorescein sodium (flu-Na), surface P-gp expression, and functionality. Mucous secretion was also identified by alcian blue staining. Results: TEER and permeability values obtained for Calu-3 monolayers were shown to plateau between day 5 and day 21 in culture with values reaching 474 ± 44 ωcm2 and 2.33 ± 0.36 × 10–7 cm/s, respectively, irrespective of the passage number examined. 32.7 ± 1.49% of Calu-3 cells cultured under these conditions detected positive for cell surface P-gp expression from day 7 onwards. Functional cell surface expression was established by rhodamine 123 drug extrusion assays. Conclusion: This study establishes a clear dependence on culture time and passage number for optimal barrier integrity, mucous secretion, and cell-surface P-gp expression and function in Calu-3 cells. Furthermore it provides initial guidelines for the optimization of this model for high throughput screening applications.
KW - Calu-3
KW - culture conditions
KW - P-glycoprotein
KW - P-gp
KW - respiratory epithelium
UR - http://www.scopus.com/inward/record.url?scp=77956419131&partnerID=8YFLogxK
U2 - 10.3109/03639041003695113
DO - 10.3109/03639041003695113
M3 - Article
C2 - 20374185
VL - 36
SP - 1207
EP - 1214
JO - Drug Development and Industrial Pharmacy
JF - Drug Development and Industrial Pharmacy
SN - 0363-9045
IS - 10
ER -