Time Resolved Beam Divergence from a Copper Vapor Laser with Unstable Resonator

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The temporal evolution of the far-field intensity distribution (and hence beam divergence) for the output of a CVL operating with both on-axis and off-axis unstable resonators is investigated in detail. The CVL output pulse consists of several temporally resolved components, where each successive component has lower divergence approaching the diffraction limit. A comprehensive model for the divergence of each temporal component from a CVL operating with a variety of unstable resonators is presented. In this model the resonator controls the output divergence by imposing geometric constraints on the propagation of spontaneous emission on repeated round-trips through the unstable resonator equivalent lensguide. Effects of resonator asymmetry and radial gain variations on the far-field intensity distribution (and hence divergence) are evaluated. Experimental measurements of the temporal evolution of output divergence from a CVL operating with both on-axis and off-axis unstable resonators and for a variety of excitation conditions are also presented. For CVL operation at high pulse repetition frequency the ASE at the start of the laser pulse has an annular profile. This annular gain distribution is found to modify the output far-field intensity distribution of the earlier temporal components of the laser pulse. For on-axis unstable resonators these components are found to have annular far-field intensity distributions, whereas for off-axis unstable resonators they have greatly reduced but anisotropic divergence.

LanguageEnglish
Pages330-342
Number of pages13
JournalIEEE Journal of Quantum Electronics
Volume31
Issue number2
DOIs
Publication statusPublished - 1995

Fingerprint

Resonators
divergence
resonators
Vapors
vapors
Copper
copper
Lasers
lasers
far fields
output
pulses
Laser pulses
aeroservoelasticity
Spontaneous emission
spontaneous emission
repetition
Diffraction
asymmetry
propagation

Bibliographical note

Copyright 1995 IEEE. Reprinted from IEEE journal of quantum electronics. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Macquarie University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Cite this

@article{9710c352820e4cf6b9180878fadba727,
title = "Time Resolved Beam Divergence from a Copper Vapor Laser with Unstable Resonator",
abstract = "The temporal evolution of the far-field intensity distribution (and hence beam divergence) for the output of a CVL operating with both on-axis and off-axis unstable resonators is investigated in detail. The CVL output pulse consists of several temporally resolved components, where each successive component has lower divergence approaching the diffraction limit. A comprehensive model for the divergence of each temporal component from a CVL operating with a variety of unstable resonators is presented. In this model the resonator controls the output divergence by imposing geometric constraints on the propagation of spontaneous emission on repeated round-trips through the unstable resonator equivalent lensguide. Effects of resonator asymmetry and radial gain variations on the far-field intensity distribution (and hence divergence) are evaluated. Experimental measurements of the temporal evolution of output divergence from a CVL operating with both on-axis and off-axis unstable resonators and for a variety of excitation conditions are also presented. For CVL operation at high pulse repetition frequency the ASE at the start of the laser pulse has an annular profile. This annular gain distribution is found to modify the output far-field intensity distribution of the earlier temporal components of the laser pulse. For on-axis unstable resonators these components are found to have annular far-field intensity distributions, whereas for off-axis unstable resonators they have greatly reduced but anisotropic divergence.",
author = "Coutts, {David W.}",
note = "Copyright 1995 IEEE. Reprinted from IEEE journal of quantum electronics. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Macquarie University{\^a}€™s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.",
year = "1995",
doi = "10.1109/3.348063",
language = "English",
volume = "31",
pages = "330--342",
journal = "IEEE Journal of Quantum Electronics",
issn = "0018-9197",
publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
number = "2",

}

Time Resolved Beam Divergence from a Copper Vapor Laser with Unstable Resonator. / Coutts, David W.

In: IEEE Journal of Quantum Electronics, Vol. 31, No. 2, 1995, p. 330-342.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Time Resolved Beam Divergence from a Copper Vapor Laser with Unstable Resonator

AU - Coutts, David W.

N1 - Copyright 1995 IEEE. Reprinted from IEEE journal of quantum electronics. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Macquarie University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

PY - 1995

Y1 - 1995

N2 - The temporal evolution of the far-field intensity distribution (and hence beam divergence) for the output of a CVL operating with both on-axis and off-axis unstable resonators is investigated in detail. The CVL output pulse consists of several temporally resolved components, where each successive component has lower divergence approaching the diffraction limit. A comprehensive model for the divergence of each temporal component from a CVL operating with a variety of unstable resonators is presented. In this model the resonator controls the output divergence by imposing geometric constraints on the propagation of spontaneous emission on repeated round-trips through the unstable resonator equivalent lensguide. Effects of resonator asymmetry and radial gain variations on the far-field intensity distribution (and hence divergence) are evaluated. Experimental measurements of the temporal evolution of output divergence from a CVL operating with both on-axis and off-axis unstable resonators and for a variety of excitation conditions are also presented. For CVL operation at high pulse repetition frequency the ASE at the start of the laser pulse has an annular profile. This annular gain distribution is found to modify the output far-field intensity distribution of the earlier temporal components of the laser pulse. For on-axis unstable resonators these components are found to have annular far-field intensity distributions, whereas for off-axis unstable resonators they have greatly reduced but anisotropic divergence.

AB - The temporal evolution of the far-field intensity distribution (and hence beam divergence) for the output of a CVL operating with both on-axis and off-axis unstable resonators is investigated in detail. The CVL output pulse consists of several temporally resolved components, where each successive component has lower divergence approaching the diffraction limit. A comprehensive model for the divergence of each temporal component from a CVL operating with a variety of unstable resonators is presented. In this model the resonator controls the output divergence by imposing geometric constraints on the propagation of spontaneous emission on repeated round-trips through the unstable resonator equivalent lensguide. Effects of resonator asymmetry and radial gain variations on the far-field intensity distribution (and hence divergence) are evaluated. Experimental measurements of the temporal evolution of output divergence from a CVL operating with both on-axis and off-axis unstable resonators and for a variety of excitation conditions are also presented. For CVL operation at high pulse repetition frequency the ASE at the start of the laser pulse has an annular profile. This annular gain distribution is found to modify the output far-field intensity distribution of the earlier temporal components of the laser pulse. For on-axis unstable resonators these components are found to have annular far-field intensity distributions, whereas for off-axis unstable resonators they have greatly reduced but anisotropic divergence.

UR - http://www.scopus.com/inward/record.url?scp=0029251521&partnerID=8YFLogxK

U2 - 10.1109/3.348063

DO - 10.1109/3.348063

M3 - Article

VL - 31

SP - 330

EP - 342

JO - IEEE Journal of Quantum Electronics

T2 - IEEE Journal of Quantum Electronics

JF - IEEE Journal of Quantum Electronics

SN - 0018-9197

IS - 2

ER -