Tissue glycomics distinguish tumour sites in women with advanced serous adenocarcinoma

Merrina Anugraham, Francis Jacob, Arun V. Everest-Dass, Andreas Schoetzau, Sheri Nixdorf, Neville F. Hacker, Daniel Fink, Viola Heinzelmann-Schwarz, Nicolle H. Packer*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)
37 Downloads (Pure)


In the era of precision medicine, the tailoring of cancer treatment is increasingly important as we transition from organ-based diagnosis towards a more comprehensive and patient-centric molecular diagnosis. This is particularly the case for high-grade serous adenocarcinomas of the ovary and peritoneum, which are commonly diagnosed at an advanced stage, and collectively treated and managed similarly. We characterized the N- and O-glycome of serous ovarian (OC) and peritoneal cancer (PC) tissues using PGC-LC-ESI-IT-MS/MS profiling and validated the discriminatory glycans and their corresponding glyco-gene expression levels using cell lines and transcriptomic data from 232 patients. Overall, the N- and O-glycan repertoires of both cancer types were found to comprise mostly of α2,6-sialylated glycan structures, with the majority of N-glycans displaying the biantennary mono- and disialylation as well as bisecting-type biantennary glycans. The MS profiling by PGC-LC also revealed several glycan structural isomers that corresponded to LacdiNAc-type (GalNAcβ1-4GlcNAc) motifs that were unique to the serous ovarian cancers and that correlated with elevated gene expression of B4GALNT3 and B4GALNT4 in patients with serous cancer. Statistical evaluation of the discriminatory glycans also revealed 13 N- and 3 O-glycans (P < 0.05) that significantly discriminated tumour-sampling sites, with LacdiNAc-type N-glycans (m/z 1205.02− and m/z 1059.42−) being associated with ovarian-derived cancer tissue and bisecting GlcNAc-type (m/z 994.92−) and branched N-glycans (m/z 1294.02− and m/z 1148.42−) upregulated at the metastatic sites. Hence, we demonstrate for the first time that OC and PC display distinct molecular signatures at both their glycomic and transcriptomic levels. These signatures may have potential utility for the development of accurate diagnosis and personalized treatments.

Original languageEnglish
Pages (from-to)1595-1615
Number of pages21
JournalMolecular Oncology
Issue number11
Publication statusPublished - 1 Nov 2017

Bibliographical note

Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


  • gene expression
  • glycans
  • mass spectrometry
  • ovarian cancer
  • peritoneal cancer
  • porous graphitized carbon


Dive into the research topics of 'Tissue glycomics distinguish tumour sites in women with advanced serous adenocarcinoma'. Together they form a unique fingerprint.

Cite this