Tomography and generative training with quantum Boltzmann machines

Mária Kieferová, Nathan Wiebe

Research output: Contribution to journalArticlepeer-review

44 Citations (Scopus)

Abstract

The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP, provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

Original languageEnglish
Article number062327
Pages (from-to)1-13
Number of pages13
JournalPhysical Review A
Volume96
Issue number6
DOIs
Publication statusPublished - 22 Dec 2017

Fingerprint

Dive into the research topics of 'Tomography and generative training with quantum Boltzmann machines'. Together they form a unique fingerprint.

Cite this