Towards adaptive context management for intelligent conversational question answering

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

Abstract

This particular paper introduces an Adaptive Context Management (ACM) framework for the Conversational Question Answering (ConvQA) systems. The key objective of the ACM framework is to optimize the use of the conversation history by dynamically managing context for maximizing the relevant information provided to a ConvQA model within its token limit. Our approach incorporates a Context Manager (CM) Module, a Summarization (SM) Module, and an Entity Extraction (EE) Module in a bid to handle the conversation history efficaciously. The CM Module dynamically adjusts the context size, thereby preserving the most relevant and recent information within a model’s token limit. The SM Module summarizes the older parts of the conversation history via a sliding window. When the summarization window exceeds its limit, the EE Module identifies and retains key entities from the oldest conversation turns. Experimental results demonstrate the effectiveness of our envisaged framework in generating accurate and contextually appropriate responses, thereby highlighting the potential of the ACM framework to enhance the robustness and scalability of the ConvQA systems.
Original languageEnglish
Title of host publicationAdvanced Data Mining and Applications
Subtitle of host publication20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3-5, 2024, proceedings, part V
EditorsQuan Z. Sheng, Gill Dobbie, Jing Jiang, Xuyun Zhang, Wei Emma Zhang, Yannis Manolopoulos, Jia Wu, Wathiq Mansoor, Congbo Ma
Place of PublicationSingapore
PublisherSpringer, Springer Nature
Pages360-375
Number of pages16
ISBN (Electronic)9789819608478
ISBN (Print)9789819608461
DOIs
Publication statusPublished - 2025
Event20th International Conference on Advanced Data Mining Applications, ADMA 2024 - Sydney, Australia
Duration: 3 Dec 20245 Dec 2024

Publication series

NameLecture Notes in Computer Science
PublisherSpringer
Volume15391
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th International Conference on Advanced Data Mining Applications, ADMA 2024
Country/TerritoryAustralia
CitySydney
Period3/12/245/12/24

Keywords

  • Conversational Question Answering
  • Adaptive Context Management
  • Natural Language Processing
  • Large Language Models

Cite this