Projects per year
Abstract
To enhance the reliability and credibility of graph neural networks (GNNs) and improve the transparency of their decision logic, a new field of explainability of GNNs (XGNN) has emerged. However, two major limitations severely degrade the performance and hinder the generalizability of existing XGNN methods: they (a) fail to capture the complete decision logic of GNNs across diverse distributions in the entire dataset's sample space, and (b) impose strict prerequisites on edge properties and GNN internal accessibility. To address these limitations, we propose OPEN, a novel cOmprehensive and Prerequisite-free Explainer for GNNs. OPEN, as the first work in the literature, can infer and partition the entire dataset's sample space into multiple environments, each containing graphs that follow a distinct distribution. OPEN further learns the decision logic of GNNs across different distributions by sampling subgraphs from each environment and analyzing their predictions, thus eliminating the need for strict prerequisites. Experimental results demonstrate that OPEN captures nearly complete decision logic of GNNs, outperforms state-of-the-art methods in fidelity while maintaining similar efficiency, and enhances robustness in real-world scenarios.
| Original language | English |
|---|---|
| Title of host publication | Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence |
| Editors | James Kwok |
| Place of Publication | California |
| Publisher | International Joint Conferences on Artificial Intelligence |
| Pages | 9456-9464 |
| Number of pages | 9 |
| ISBN (Electronic) | 9781956792065 |
| DOIs | |
| Publication status | Published - 2025 |
| Event | International Joint Conference on Artificial Intelligence (34th : 2025) - Guangzhou, China Duration: 16 Aug 2025 → 22 Aug 2025 |
Conference
| Conference | International Joint Conference on Artificial Intelligence (34th : 2025) |
|---|---|
| Abbreviated title | IJCAI-25 |
| Country/Territory | China |
| City | Guangzhou |
| Period | 16/08/25 → 22/08/25 |
Fingerprint
Dive into the research topics of 'Towards comprehensive and prerequisite-free explainer for graph neural networks'. Together they form a unique fingerprint.Projects
- 1 Active
-
DP230100676: Trust-Oriented Data Analytics in Online Social Networks
Wang, Y. (Primary Chief Investigator), Orgun, M. (Chief Investigator), Liu, G. (Chief Investigator) & Tan, K. L. (Partner Investigator)
9/01/23 → 8/01/26
Project: Research