Projects per year
Abstract
Graph-level anomaly detection aims at capturing anomalous individual graphs in a graph set. Due to its significance in various real-world application fields, e.g., identifying rare molecules in chemistry and detecting potential frauds in online social networks, graph-level anomaly detection has received great attention recently. In distinction from node- and edge-level anomaly detection that is devoted to identifying anomalies on a single graph, graph-level anomaly detection faces more significant challenges because both the intra- and inter- graph structural and attribute patterns need to be taken into account to distinguish anomalies that exhibit deviating structures, rare attributes or the both. Although deep graph representation learning shows effectiveness in fusing high-level representations and capturing characters of individual graphs, most of the existing works are defective in graph-level anomaly detection because of their limited capability in exploring information across graphs, the imbalanced data distribution of anomalies, and low interpretability of the black-box graph neural networks (GNNs). To overcome these limitations, we propose a novel deep evolutionary graph mapping framework named GmapAD1, which can adaptively map each graph into a new feature space based on its similarity to a set of representative nodes chosen from the graph set. By automatically adjusting the candidate nodes using a specially designed evolutionary algorithm, anomalies and normal graphs are mapped to separate areas in the new feature space where a clear boundary between them can be learned. The selected candidate nodes can therefore be regarded as a benchmark for explaining anomalies because anomalies are more dissimilar/similar to the benchmark than normal graphs. Through our extensive experiments on nine real-world datasets, we demonstrate that exploring both intra- and inter- graph structural and attribute information is critical to spot anomalous graphs, and our method has achieved statistically significant improvements compared to the state of the art in terms of precision, recall, F1 score, and AUC.
Original language | English |
---|---|
Title of host publication | KDD '23 |
Subtitle of host publication | proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining |
Place of Publication | New York |
Publisher | Association for Computing Machinery |
Pages | 1631-1642 |
Number of pages | 12 |
ISBN (Electronic) | 9798400701030 |
DOIs | |
Publication status | Published - 2023 |
Event | 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023 - Long Beach, United States Duration: 6 Aug 2023 → 10 Aug 2023 |
Conference
Conference | 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023 |
---|---|
Country/Territory | United States |
City | Long Beach |
Period | 6/08/23 → 10/08/23 |
Keywords
- Graph anomaly detection
- anomaly detection
- graph representation learning
- differential evolution
Fingerprint
Dive into the research topics of 'Towards graph-level anomaly detection via deep evolutionary mapping'. Together they form a unique fingerprint.-
DP230100899: New Graph Mining Technologies to Enable Timely Exploration of Social Events
1/01/23 → 31/12/25
Project: Research
-
What Can You Trust in the Large and Noisy Web?
Sheng, M., Yang, J., Zhang, W. & Dustdar, S.
1/05/20 → 30/04/23
Project: Research