TY - JOUR
T1 - Truncations of L-functions in residue classes
AU - Shparlinski, Igor E.
PY - 2006/5
Y1 - 2006/5
N2 - Let χ (n) be a quadratic character modulo a prime p. For a fixed integer s ≠ 0, we estimate certain exponential sums with truncated L-functions Ls,p(n) = ∑ j=1n χ(j)/js (n = 1, 2, ...). Our estimate implies certain uniformly of distribution properties of reductions of Ls,p(n) in the residue classes modulo p.
AB - Let χ (n) be a quadratic character modulo a prime p. For a fixed integer s ≠ 0, we estimate certain exponential sums with truncated L-functions Ls,p(n) = ∑ j=1n χ(j)/js (n = 1, 2, ...). Our estimate implies certain uniformly of distribution properties of reductions of Ls,p(n) in the residue classes modulo p.
UR - http://www.scopus.com/inward/record.url?scp=33747722026&partnerID=8YFLogxK
U2 - 10.1017/S0017089506003120
DO - 10.1017/S0017089506003120
M3 - Article
AN - SCOPUS:33747722026
SN - 0017-0895
VL - 48
SP - 347
EP - 350
JO - Glasgow Mathematical Journal
JF - Glasgow Mathematical Journal
IS - 2
ER -