Tunable lifetime multiplexing using luminescent nanocrystals

Yiqing Lu, Jiangbo Zhao, Run Zhang, Yujia Liu, Deming Liu, Ewa M. Goldys, Xusan Yang, Peng Xi, Anwar Sunna, Jie Lu, Yu Shi, Robert C. Leif, Yujing Huo, Jian Shen, James A. Piper, J. Paul Robinson, Dayong Jin

Research output: Contribution to journalArticlepeer-review

665 Citations (Scopus)

Abstract

Optical multiplexing plays an important role in applications such as optical data storage, document security, molecular probes and bead assays for personalized medicine. Conventional fluorescent colour coding is limited by spectral overlap and background interference, restricting the number of distinguishable identities. Here, we show that tunable luminescent lifetimes τ in the microsecond region can be exploited to code individual upconversion nanocrystals. In a single colour band, one can generate more than ten nanocrystal populations with distinct lifetimes ranging from 25.6 μs to 662.4 μs and decode their well-separated lifetime identities, which are independent of both colour and intensity. Such 'τ-dots' potentially suit multichannel bioimaging, high-throughput cytometry quantification, high-density data storage, as well as security codes to combat counterfeiting. This demonstration extends the optical multiplexing capability by adding the temporal dimension of luminescent signals, opening new opportunities in the life sciences, medicine and data security.

Original languageEnglish
Pages (from-to)32-36
Number of pages5
JournalNature Photonics
Volume8
Issue number1
DOIs
Publication statusPublished - Jan 2014

Fingerprint

Dive into the research topics of 'Tunable lifetime multiplexing using luminescent nanocrystals'. Together they form a unique fingerprint.

Cite this