Turing redux: enculturation and computation

Regina E. Fabry*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Many of our cognitive capacities are shaped by enculturation. Enculturation is the acquisition of cognitive practices such as symbol-based mathematical practices, reading, and writing during ontogeny. Enculturation is associated with significant changes to the organization and connectivity of the brain and to the functional profiles of embodied actions and motor programs. Furthermore, it relies on scaffolded cultural learning in the cognitive niche. The purpose of this paper is to explore the components of symbol-based mathematical practices. Phylogenetically, these practices are the result of concerted organism-niche interactions that have led from approximate number estimations to the emergence of discrete, symbol-based mathematical operations. Ontogenetically, symbol-based mathematical practices are associated with plastic changes to neural circuitry, action schemata, and motor programs. It will be suggested that these practices rely on previously acquired capacities such as subitizing and counting. With these considerations in place, I will argue that computations, understood in the sense of Turing (1936), are a specific kind of symbol-based mathematical practices that can be realized by human organisms, machines, or by hybrid organism-machine systems. In sum, this paper suggests a new way to think about mathematical cognition and computation.
Original languageEnglish
Pages (from-to)793–808
Number of pages16
JournalCognitive Systems Research
Volume52
DOIs
Publication statusPublished - 2018
Externally publishedYes

Keywords

  • enculturation
  • mathematical cognition
  • computation
  • hybrid cognition
  • neural plasticity
  • embodied cognition

Fingerprint

Dive into the research topics of 'Turing redux: enculturation and computation'. Together they form a unique fingerprint.

Cite this