Projects per year
Abstract
In this paper, we establish the two weight commutator theorem of Calderón–Zygmund operators in the sense of Coifman–Weiss on spaces of homogeneous type, by studying the weighted Hardy and BMO space for A2 weights and by proving the sparse operator domination of commutators. The main tool here is the Haar basis, the adjacent dyadic systems on spaces of homogeneous type, and the construction of a suitable version of a sparse operator on spaces of homogeneous type. As applications, we provide a two weight commutator theorem (including the high order commutators) for the following Calderón–Zygmund operators: Cauchy integral operator on R, Cauchy–Szegö projection operator on Heisenberg groups, Szegö projection operators on a family of unbounded weakly pseudoconvex domains, the Riesz transform associated with the sub-Laplacian on stratified Lie groups, as well as the Bessel Riesz transforms (in one and several dimensions).
Original language | English |
---|---|
Pages (from-to) | 980-1038 |
Number of pages | 59 |
Journal | Journal of Geometric Analysis |
Volume | 31 |
Issue number | 1 |
Early online date | 11 Nov 2019 |
DOIs | |
Publication status | Published - Jan 2021 |
Keywords
- BMO
- Commutator
- Two weights
- Hardy space
- Factorization
Fingerprint
Dive into the research topics of 'Two weight commutators on spaces of homogeneous type and applications'. Together they form a unique fingerprint.-
Harmonic analysis and dispersive partial differential equations
Li, J., Guo, Z., Kenig, C. & Nakanishi, K.
31/01/17 → …
Project: Research
-
Harmonic analysis: function spaces and partial differential equations
Duong, X., Hofmann, S., Ouhabaz, E. M. & Wick, B.
11/02/19 → 10/02/22
Project: Other