U-Pb-Hf zircon study of two mylonitic granite complexes in the Talas-Fergana fault zone, Kyrgyzstan, and Ar-Ar age of deformations along the fault

D. Konopelko*, R. Seltmann, F. Apayarov, E. Belousova, A. Izokh, E. Lepekhina

*Corresponding author for this work

Research output: Contribution to journalArticle

40 Citations (Scopus)

Abstract

A 2000km long dextral Talas-Fergana strike-slip fault separates eastern terranes in the Kyrgyz Tien Shan from western terranes. The aim of this study was to constrain an age of dextral shearing in the central part of the fault utilizing Ar-Ar dating of micas. We also carried out a U-Pb-Hf zircon study of two different deformed granitoid complexes in the fault zone from which the micas for Ar dating were separated. Two samples of the oldest deformed Neoproterozoic granitoids in the area of study yielded U-Pb zircon SHRIMP ages 728±11Ma and 778±11Ma, characteristic for the Cryogenian Bolshoi Naryn Formation, and zircon grains analyzed for their Lu-Hf isotopic compositions yielded εHf(t) values from -11.43 to -16.73, and their calculated tHfc ages varied from 2.42 to 2.71Ga. Thus varying Cryogenian ages and noticeable heterogeneity of Meso- to Paleoproterozoic crustal sources was established for mylonitic granites of the Bolshoi Naryn Formation. Two samples of mylonitized pegmatoidal granites of the Kyrgysh Complex yielded identical 206Pb/238U ages of 279±5Ma corresponding to the main peak of Late-Paleozoic post-collisional magmatism in the Tien Shan (Seltmann et al., 2011), and zircon grains analyzed for their Lu-Hf isotopic compositions yielded εHf(t) values from -11.43 to -16.73, and calculated tHfc ages from 2.42 to 2.71Ga indicating derivation from a Paleoproterozoic crustal source. Microstructural studies showed that ductile/brittle deformation of pegmatoidal granites of the Kyrgysh Complex occurred at temperatures of 300-400°C and caused resetting of the K-Ar isotope system of primary muscovite. Deformation of mylonitized granites of the Bolshoi Naryn Formation occurred under high temperature conditions and resulted in protracted growth and recrystallization of micas. The oldest Ar-Ar muscovite age of 241Ma with a well defined plateau from a pegmatoidal granite of the Kyrgysh Complex is considered as a "minimum" age of dextral motions along this section of the fault in the Triassic while younger ages varying from 227Ma to 199Ma with typical staircase patterns indicate protracted growth and recrystallization of micas during ductile deformations which continued until the end of the Triassic.

Original languageEnglish
Pages (from-to)334-346
Number of pages13
JournalJournal of Asian Earth Sciences
Volume73
DOIs
Publication statusPublished - 5 Sep 2013

Fingerprint Dive into the research topics of 'U-Pb-Hf zircon study of two mylonitic granite complexes in the Talas-Fergana fault zone, Kyrgyzstan, and Ar-Ar age of deformations along the fault'. Together they form a unique fingerprint.

  • Cite this