U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia

Zoe Demidjuk, Simon Turner*, Mike Sandiford, Rhiannon George, John Foden, Mike Etheridge

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    107 Citations (Scopus)

    Abstract

    Young (< 5 kyr) olivine- and clinopyroxene-phyric ne-hawaiites from Mounts Gambier and Schank in the Newer Volcanic Province in South Australia have been analysed for major and trace elements as well as for Sr and Nd isotopes and 238U-230Th disequilibria in order to constrain the mantle melting processes responsible for their origin. The rocks are relatively primitive (6.9-9.1% MgO), incompatible trace element-enriched alkali basalts with 87Sr/86Sr = 0.70398-0.70415 and 143Nd/144Nd = 0.51280-0.51271. Trace element modelling suggests that they reflect 3-6% partial melting in the presence of 2-8% residual garnet. Trends towards low K/K* are accompanied by decreasing 87Sr/86Sr and provide evidence for the involvement of hydrous phases during melting. 230Th excesses of 12-57% cannot be simulated by batch melting of the lithosphere and instead require dynamic melting models. It is argued that the distinction between continental basalts bearing significant U-Th disequilibria and those in secular equilibrium reflects dynamic melting in upwelling asthenosphere, rather than static batch melting within the lithosphere or the presence or absence of residual garnet. Upwelling rates are estimated at ∼ 1.5 cm/yr. A subdued, localised topographic uplift associated with the magmatism suggests that any upwelling is more likely associated with a secondary mode localised to the upper mantle, rather than a broad zone of deeply-sourced (plume) upwelling. Upper mantle, 'edge-driven' convection is consistent with seismic tomographic and anisotropy studies that imply rapid differential motion of variable thickness Australian lithosphere and the underlying asthenosphere. In this scenario, melting is linked to a significant contribution from hydrous mantle that is envisaged as resulting either from convective entrainment of lithosphere along the trailing edge of a lithospheric keel, or inherited variability in the asthenosphere.

    Original languageEnglish
    Pages (from-to)517-533
    Number of pages17
    JournalEarth and Planetary Science Letters
    Volume261
    Issue number3-4
    DOIs
    Publication statusPublished - 30 Sept 2007

    Fingerprint

    Dive into the research topics of 'U-series isotope and geodynamic constraints on mantle melting processes beneath the Newer Volcanic Province in South Australia'. Together they form a unique fingerprint.

    Cite this