Abstract
Superhydrophobic materials with excellent humidity tolerance, high porosity and light transmittance are being investigated for numerous applications including moisture-sensitive catalysts and perovskite solar cells. Here, we report the one-step solvent-free synthesis of ultraporous superhydrophobic nano-layers by the on-the-fly functionalization of nanoparticle aerosols. Short exposure of surfaces to hot Mn3O4, ZnO and TiO2 aerosols results in ultraporous nanoparticle networks with repulsive dewetting state approaching ideal Cassie-Baxter superhydrophobicity. In addition to showcasing sliding angles of ca. 0° and very low contact angle hysteresis of 3° ± 2°, these optimal nano-layers have up to 98% porosity and pore size of several micrometres, a key feature to enable efficient penetration of gases to the substrate surface. The stability of this ultraporous superhydrophobic morphology is demonstrated by rapidly applying Moses effect-functionality to substrates that parts water up to 5 mm high. This scalable synthesis method offers a flexible and rapid approach for the production of numerous moisture-resistant devices including gas sensors, catalysts and perovskite solar cells.
Original language | English |
---|---|
Pages (from-to) | 6085-6093 |
Number of pages | 9 |
Journal | Nanoscale |
Volume | 8 |
Issue number | 11 |
DOIs | |
Publication status | Published - 21 Mar 2016 |
Externally published | Yes |