Ultrasonic degradation of per-and polyfluoroalkyl substances (PFAS), aqueous film-forming foam (AFFF) and foam fractionate (FF)

Olalekan Simon Awoyemi, Yunlong Luo, Junfeng Niu, Ravi Naidu, Cheng Fang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
22 Downloads (Pure)

Abstract

The ubiquitousness of per- and polyfluoroalkyl substances (PFAS) is a big concern and PFAS remediation is urgently needed such as via degradation. While previous studies have explored ultrasonic degradation of PFAS, work evaluating the operational parameters is rare, especially concerning real wastes such as aqueous film-forming foam (AFFF) and foam fractionate (FF). This study investigates the key operational parameters affecting the degradation efficiency of PFAS, encompassing ultrasonication frequency (580–1144 kHz), power intensity (125–187.5 W), initial concentration (0.08–40 ppm), treatment duration (0.5–3 h), sample volume (100–500 mL), and PFAS structure (perfluorooctanoic acid or PFOA; perfluorooctane sulfonate or PFOS; 6:2 fluorotelomer sulfonate or 6:2 FTS). The defluorination kinetics is different from the removal/degradation kinetics due to the generation of degradation intermediates, suggesting the complex degradation mechanism, which should be evaluated to close the mass balance effectively. Notably, the optimised ultrasonic system achieves ∼125%/∼115% defluorination in AFFF/FF example wastes (compared to ∼65%/∼97% removal) despite their complex composition and the involvement of total oxidizable precursor (TOP) assay. In the meantime, a few new PFAS are detected in the post-treatments, including perfluorohexane sulfonic acid (PFHxS) and 10:2 fluorotelomer sulfonate (10:2 FTS) in the AFFF, and perfluorooctane sulfonamide (FOSA) and 8:2 fluorotelomer sulfonate (8:2 FTS) in the FF, again suggesting the complex degradation mechanism. Overall, ultrasonication is effective to degrade PFAS real example wastes, advancing its potential for scale-up applications.

Original languageEnglish
Article number142420
Pages (from-to)1-10
Number of pages10
JournalChemosphere
Volume360
Early online date23 May 2024
DOIs
Publication statusPublished - Jul 2024
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2024. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • AFFF
  • Degradation
  • Foam fractionate
  • PFAS
  • Ultrasonication

Cite this