Upper crustal structure and magmatism in southwest Washington: Vp, Vs, and Vp/Vs results from the iMUSH active-source seismic experiment

E. Kiser*, A. Levander, C. Zelt, B. Schmandt, S. Hansen

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)


    Structural details of the crust play an important role in controlling the distribution of volcanic activity in arc systems. In southwest Washington, several different regional structures associated with accretion and magmatism have been invoked to explain the broad distribution of Cascade volcanism in this region. In order to image these regional structures in the upper crust, Pg and Sg travel times from the imaging Magma Under St. Helens (iMUSH) active-source seismic experiment are inverted for Vp, Vs, and Vp/Vs models in the region surrounding Mount St. Helens. Several features of these models provide new insights into the regional structure of the upper crust. A large section of the Southern Washington Cascades Conductor is imaged as a low Vp/Vs anomaly that is inferred to represent a broad sedimentary/metasedimentary sequence that composes the upper crust in this region. The accreted terrane Siletzia is imaged west of Mount St. Helens as north/south trending high Vp and Vp/Vs bodies. The Vp/Vs model shows relatively high Vp/Vs regions near Mount St. Helens and the Indian Heaven Volcanic Field, which could be related to the presence of magmatic fluids. Separating these two volcanic regions below 6-km depth is a northeast trending series of high Vp and Vs bodies. These bodies have the same orientation as several volcanic/magmatic features at the surface, including Mount St. Helens and Mount Rainier, and it is argued that these high-velocity features are a regional-scale group of intrusive bodies associated with a crustal weak zone that focuses magma ascent.

    Original languageEnglish
    Pages (from-to)7067-7080
    Number of pages14
    JournalJournal of Geophysical Research: Solid Earth
    Issue number7
    Publication statusPublished - Jul 2019

    Fingerprint Dive into the research topics of 'Upper crustal structure and magmatism in southwest Washington: V<i><sub>p</sub></i>, V<i><sub>s</sub></i>, and V<i><sub>p</sub></i>/V<i><sub>s</sub></i> results from the iMUSH active-source seismic experiment'. Together they form a unique fingerprint.

    Cite this