TY - JOUR
T1 - Urban stormwater run-off promotes compression of saltmarshes by freshwater plants and mangrove forests
AU - Geedicke, Ina
AU - Oldeland, Jens
AU - Leishman, Michelle R.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Subtropical and temperate coastal saltmarsh of Australia is listed as an endangered ecological community under the Commonwealth Environment Protection and Biodiversity Conservation Act (EPBC Act). Saltmarshes are under threat from sea level rise, landward migration of mangroves, and in urban regions from habitat loss, input of litter, nutrients, and other contaminants. In urbanised catchments, saltmarsh areas receive nutrient-enriched and pollutant-contaminated run-off, such as heavy metals, through the stormwater system. This study aimed to investigate the impact of urban stormwater on saltmarsh and mangrove species composition and distribution. To test the effect of stormwater run-off in urbanised catchments on saltmarsh communities, we analysed the soil for pollutant elements, salinity and nutrient concentration and recorded vegetation composition at eight sites in the Sydney region, Australia. We found that elevated total nitrogen (>0.4 wt%) and reduced salinity of the soil downslope of stormwater outlets facilitates establishment of exotic plants and might promote migration of mangroves into saltmarshes, resulting in a squeezing effect on the distribution of saltmarsh vegetation. Saltmarsh cover was significantly lower below stormwater outlets and exotic plant cover increased significantly with sediment calcium concentrations above 8840 mg/kg, which are associated with stormwater run-off. However, this effect was found to be strongest in highly industrialised areas compared to residential areas. Understanding the impact of pollutants on coastal wetlands will improve management strategies for the conservation of this important endangered ecological community.
AB - Subtropical and temperate coastal saltmarsh of Australia is listed as an endangered ecological community under the Commonwealth Environment Protection and Biodiversity Conservation Act (EPBC Act). Saltmarshes are under threat from sea level rise, landward migration of mangroves, and in urban regions from habitat loss, input of litter, nutrients, and other contaminants. In urbanised catchments, saltmarsh areas receive nutrient-enriched and pollutant-contaminated run-off, such as heavy metals, through the stormwater system. This study aimed to investigate the impact of urban stormwater on saltmarsh and mangrove species composition and distribution. To test the effect of stormwater run-off in urbanised catchments on saltmarsh communities, we analysed the soil for pollutant elements, salinity and nutrient concentration and recorded vegetation composition at eight sites in the Sydney region, Australia. We found that elevated total nitrogen (>0.4 wt%) and reduced salinity of the soil downslope of stormwater outlets facilitates establishment of exotic plants and might promote migration of mangroves into saltmarshes, resulting in a squeezing effect on the distribution of saltmarsh vegetation. Saltmarsh cover was significantly lower below stormwater outlets and exotic plant cover increased significantly with sediment calcium concentrations above 8840 mg/kg, which are associated with stormwater run-off. However, this effect was found to be strongest in highly industrialised areas compared to residential areas. Understanding the impact of pollutants on coastal wetlands will improve management strategies for the conservation of this important endangered ecological community.
KW - exotic plants
KW - heavy metals
KW - intertidal wetlands
KW - mangrove encroachment
KW - nutrients
KW - pollution
UR - http://www.scopus.com/inward/record.url?scp=85046641658&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2018.04.357
DO - 10.1016/j.scitotenv.2018.04.357
M3 - Article
C2 - 29751296
AN - SCOPUS:85046641658
SN - 0048-9697
VL - 637-638
SP - 137
EP - 144
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -