Using machine learning to explore the dynamics of complex laser systems

J. P. Toomey, A. Reid, L. McCalman, T. Malica, D. M. Kane

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionResearchpeer-review

Abstract

Proof of principle study using a machine learning algorithm to actively sample the operating parameter space of a complex laser system, in real-time, to find the boundaries between differentiated dynamical regions efficiently.

LanguageEnglish
Title of host publicationPhotonics and Fiber Technology 2016 (ACOFT, BGPP, NP)
Subtitle of host publicationproceedings
PublisherOSA - The Optical Society
Pages1-2
Number of pages2
ISBN (Print)9781943580170
DOIs
Publication statusPublished - 29 Aug 2016
EventAustralian Conference on Optical Fibre Technology, ACOFT 2016 - Sydney, Australia
Duration: 5 Sep 20168 Sep 2016

Other

OtherAustralian Conference on Optical Fibre Technology, ACOFT 2016
CountryAustralia
CitySydney
Period5/09/168/09/16

Fingerprint

Learning algorithms
Learning systems
Lasers

Cite this

Toomey, J. P., Reid, A., McCalman, L., Malica, T., & Kane, D. M. (2016). Using machine learning to explore the dynamics of complex laser systems. In Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP): proceedings (pp. 1-2). [JT4A.18-1] OSA - The Optical Society. https://doi.org/10.1364/ACOFT.2016.JT4A.18
Toomey, J. P. ; Reid, A. ; McCalman, L. ; Malica, T. ; Kane, D. M. / Using machine learning to explore the dynamics of complex laser systems. Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP): proceedings. OSA - The Optical Society, 2016. pp. 1-2
@inproceedings{f3f754883acd4dd5ac6dfbf668a99678,
title = "Using machine learning to explore the dynamics of complex laser systems",
abstract = "Proof of principle study using a machine learning algorithm to actively sample the operating parameter space of a complex laser system, in real-time, to find the boundaries between differentiated dynamical regions efficiently.",
author = "Toomey, {J. P.} and A. Reid and L. McCalman and T. Malica and Kane, {D. M.}",
year = "2016",
month = "8",
day = "29",
doi = "10.1364/ACOFT.2016.JT4A.18",
language = "English",
isbn = "9781943580170",
pages = "1--2",
booktitle = "Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP)",
publisher = "OSA - The Optical Society",

}

Toomey, JP, Reid, A, McCalman, L, Malica, T & Kane, DM 2016, Using machine learning to explore the dynamics of complex laser systems. in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP): proceedings., JT4A.18-1, OSA - The Optical Society, pp. 1-2, Australian Conference on Optical Fibre Technology, ACOFT 2016, Sydney, Australia, 5/09/16. https://doi.org/10.1364/ACOFT.2016.JT4A.18

Using machine learning to explore the dynamics of complex laser systems. / Toomey, J. P.; Reid, A.; McCalman, L.; Malica, T.; Kane, D. M.

Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP): proceedings. OSA - The Optical Society, 2016. p. 1-2 JT4A.18-1.

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionResearchpeer-review

TY - GEN

T1 - Using machine learning to explore the dynamics of complex laser systems

AU - Toomey, J. P.

AU - Reid, A.

AU - McCalman, L.

AU - Malica, T.

AU - Kane, D. M.

PY - 2016/8/29

Y1 - 2016/8/29

N2 - Proof of principle study using a machine learning algorithm to actively sample the operating parameter space of a complex laser system, in real-time, to find the boundaries between differentiated dynamical regions efficiently.

AB - Proof of principle study using a machine learning algorithm to actively sample the operating parameter space of a complex laser system, in real-time, to find the boundaries between differentiated dynamical regions efficiently.

UR - http://www.scopus.com/inward/record.url?scp=85019506609&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/record.url?scp=85019531574&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/record.url?scp=85019531688&partnerID=8YFLogxK

U2 - 10.1364/ACOFT.2016.JT4A.18

DO - 10.1364/ACOFT.2016.JT4A.18

M3 - Conference proceeding contribution

SN - 9781943580170

SP - 1

EP - 2

BT - Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP)

PB - OSA - The Optical Society

ER -

Toomey JP, Reid A, McCalman L, Malica T, Kane DM. Using machine learning to explore the dynamics of complex laser systems. In Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP): proceedings. OSA - The Optical Society. 2016. p. 1-2. JT4A.18-1 https://doi.org/10.1364/ACOFT.2016.JT4A.18