TY - JOUR
T1 - Viral discovery in the invasive Australian cane toad (Rhinella marina) using metatranscriptomic and genomic approaches
AU - Russo, Alice G.
AU - Eden, John Sebastian
AU - Tuipulotu, Daniel Enosi
AU - Shi, Mang
AU - Selechnik, Daniel
AU - Shine, Richard
AU - Rollins, Lee Ann
AU - Holmes, Edward C.
AU - White, Peter A.
PY - 2018/9
Y1 - 2018/9
N2 - Cane toads are a notorious invasive species, inhabiting over 1.2 million km2 of Australia and threatening native biodiversity. The release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile- and amphibian-specific cluster of the Picornaviridae basal to the Kobuvirus-like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, Rhinella marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains 8 complete RMERV proviruses as well as 21 additional truncated insertions. The oldest full-length RMERV provirus was estimated to have inserted 1.9 million years ago (MYA). To screen for these viral sequences in additional toads, we analyzed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, while RMERV transcripts were observed at all six sites. Finally, we scanned the cane toad genome for nonretroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae. This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species.
AB - Cane toads are a notorious invasive species, inhabiting over 1.2 million km2 of Australia and threatening native biodiversity. The release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile- and amphibian-specific cluster of the Picornaviridae basal to the Kobuvirus-like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, Rhinella marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains 8 complete RMERV proviruses as well as 21 additional truncated insertions. The oldest full-length RMERV provirus was estimated to have inserted 1.9 million years ago (MYA). To screen for these viral sequences in additional toads, we analyzed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, while RMERV transcripts were observed at all six sites. Finally, we scanned the cane toad genome for nonretroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae. This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species.
KW - cane toad
KW - virus
KW - discovery
KW - invasive species
UR - http://www.scopus.com/inward/record.url?scp=85051811533&partnerID=8YFLogxK
UR - http://purl.org/au-research/grants/arc/FL120100074
U2 - 10.1128/JVI.00768-18
DO - 10.1128/JVI.00768-18
M3 - Article
C2 - 29899109
AN - SCOPUS:85051811533
SN - 1098-5514
VL - 92
SP - 1
EP - 18
JO - Journal of Virology
JF - Journal of Virology
IS - 17
M1 - e00768-18
ER -