Wavelet decomposition of Calderón-Zygmund operators on function spaces

Ka Sing Lau*, Lixin Yan

*Corresponding author for this work

    Research output: Contribution to journalArticle

    4 Citations (Scopus)

    Abstract

    We make use of the Beylkin-Coifman-Rokhlin wavelet decomposition algorithm on the Calderón-Zygmund kernel to obtain some fine estimates on the operator and prove the T(1) theorem on Besov and Triebel-Lizorkin spaces. This extends previous results of Frazier et al., and Han and Hofmann.

    Original languageEnglish
    Pages (from-to)29-46
    Number of pages18
    JournalJournal of the Australian Mathematical Society
    Volume77
    Issue number1
    Publication statusPublished - Aug 2004

    Keywords

    • BCR algorithm
    • Besov space
    • Calderón-Zygmund operator
    • Triebel-Lizorkin space
    • Wavelet

    Fingerprint Dive into the research topics of 'Wavelet decomposition of Calderón-Zygmund operators on function spaces'. Together they form a unique fingerprint.

  • Cite this