Abstract
Background: Among both plants and arthropods, super-hydrophobic surfaces have evolved that enable self-cleaning, locomotion on water surfaces, or plastron respiration. Super-hydrophobicity is achieved by a combination of non-polar substances and complex micro- and nano-structures, usually acquired by growing processes or the deposition of powder-like materials.
Results: Here we report on a multi-phasic secretion in whip spiders (Arachnida, Amblypygi), which externally forms durable, hierarchical microstructures on the basically smooth cuticle. The solidified secretion crust makes the previously highly wettable cuticle super-hydrophobic. We describe the ultrastructure of secretory cells, and the maturation and secretion of the different products involved.
Conclusion: Whip spiders represent intriguing objects of study for revealing the mechanisms of the formation of complex microstructures in non-living systems. Understanding the physical and chemical processes involved may, further, be of interest for bio-inspired design of functional surface coatings.
Original language | English |
---|---|
Article number | 23 |
Pages (from-to) | 23-1-23-10 |
Number of pages | 10 |
Journal | Zoological letters |
Volume | 2 |
DOIs | |
Publication status | Published - 2016 |
Bibliographical note
Copyright the Author(s) 2016. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- anti-wetting
- surface coating
- cuticle
- colloid
- Arachnida
- Amblypygi
- plastron
- cerotegument