Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures

Raheel M. Hashmi, Basit A. Zeb, Karu P. Esselle

Research output: Contribution to journalArticlepeer-review

98 Citations (Scopus)

Abstract

A novel method is presented to design single-feed high-gain EBG resonator antennas (ERAs) with significantly wider bandwidths. Dielectric contrast is introduced to 1-D EBG superstructures composed of unprinted dielectric slabs, and the thicknesses of each of these slabs is optimized to achieve a wideband defect mode in a unit-cell model. Next, antennas are designed and their superstructure areas are truncated to increase the antenna bandwidth and aperture efficiency while decreasing antenna footprint. We demonstrate that a small superstructure area increases the 3-dB bandwidth of ERAs significantly. A prototype ERA designed with a single feed and superstructure area as small as 1.5 λ0 × 1.5 λ0 has a measured 3-dB directivity bandwidth of 22% at a peak gain of 18.2 dBi. This prototype antenna was made out of three slabs of different dielectric constants, two of them touching each other. This prototype demonstrates more than 85% reduction in the ERA footprint alongside a drastic improvement in bandwidth over the 3%-4% measured bandwidth of the classical single-feed ERAs with unprinted slabs.

Original languageEnglish
Article number6781574
Pages (from-to)2970-2977
Number of pages8
JournalIEEE Transactions on Antennas and Propagation
Volume62
Issue number6
DOIs
Publication statusPublished - Jun 2014

Keywords

  • Broadband
  • Fabry-Perot cavity antenna
  • composite slab
  • electromagnetic band gap (EBG)
  • high gain
  • partially reflecting surface (PRS)
  • resonant-cavity antenna (RCA)

Fingerprint

Dive into the research topics of 'Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures'. Together they form a unique fingerprint.

Cite this