Abstract
The recent growth of anonymous social network services - such as 4chan, Whisper, and Yik Yak - has brought online anonymity into the spotlight. For these services to function properly, the integrity of user anonymity must be preserved. If an attacker can determine the physical location from where an anonymous message was sent, then the attacker can potentially use side information (for example, knowledge of who lives at the location) to de-Anonymize the sender of the message.
In this paper, we investigate whether the popular anonymous social media application Yik Yak is susceptible to localization attacks, thereby putting user anonymity at risk. The problem is challenging because Yik Yak application does not provide information about distances between user and message origins or any other message location information. We provide a comprehensive data collection and supervised machine learning methodology that does not require any reverse engineering of the Yik Yak protocol, is fully automated, and can be remotely run from anywhere. We show that we can accurately predict the locations of messages up to a small average error of 106 meters. We also devise an experiment where each message emanates from one of nine dorm colleges on the University of California Santa Cruz campus. We are able to determine the correct dorm college that generated each message 100% of the time.
Original language | English |
---|---|
Title of host publication | IMC '16 |
Subtitle of host publication | proceedings of the 2016 ACM Internet Measurement Conference |
Place of Publication | New York |
Publisher | Association for Computing Machinery, Inc |
Pages | 25-31 |
Number of pages | 7 |
ISBN (Electronic) | 9781450345262 |
DOIs | |
Publication status | Published - 2016 |
Externally published | Yes |
Event | 2016 ACM Internet Measurement Conference, IMC 2016 - Santa Monica, United States Duration: 14 Nov 2016 → 16 Nov 2016 |
Conference
Conference | 2016 ACM Internet Measurement Conference, IMC 2016 |
---|---|
Country/Territory | United States |
City | Santa Monica |
Period | 14/11/16 → 16/11/16 |
Keywords
- Localization Attack
- Machine Learning Inference
- Anonymous Social Networks
- Yik Yak